lean2/library/algebra/order.lean

305 lines
10 KiB
Text
Raw Normal View History

/-
Copyright (c) 2014 Jeremy Avigad. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Module: algebra.order
Author: Jeremy Avigad
Various types of orders. We develop weak orders (<=) and strict orders (<) separately. We also
consider structures with both, where the two are related by
x < y ↔ (x ≤ y ∧ x ≠ y) (order_pair)
x ≤ y ↔ (x < y x = y) (strong_order_pair)
These might not hold constructively in some applications, but we can define additional structures
with both < and ≤ as needed.
-/
import logic.eq logic.connectives
import data.unit data.sigma data.prod
import algebra.function algebra.binary
open eq eq.ops
namespace algebra
variable {A : Type}
/- overloaded symbols -/
structure has_le [class] (A : Type) :=
(le : A → A → Prop)
structure has_lt [class] (A : Type) :=
(lt : A → A → Prop)
infixl `<=` := has_le.le
infixl `≤` := has_le.le
infixl `<` := has_lt.lt
definition has_le.ge {A : Type} [s : has_le A] (a b : A) := b ≤ a
notation a ≥ b := has_le.ge a b
notation a >= b := has_le.ge a b
definition has_lt.gt {A : Type} [s : has_lt A] (a b : A) := b < a
notation a > b := has_lt.gt a b
theorem le_of_eq_of_le {A : Type} [s : has_le A] {a b c : A} (H1 : a = b) (H2 : b ≤ c) :
a ≤ c := H1⁻¹ ▸ H2
theorem le_of_le_of_eq {A : Type} [s : has_le A] {a b c : A} (H1 : a ≤ b) (H2 : b = c) :
a ≤ c := H2 ▸ H1
theorem lt_of_eq_of_lt {A : Type} [s : has_lt A] {a b c : A} (H1 : a = b) (H2 : b < c) :
a < c := H1⁻¹ ▸ H2
theorem lt_of_lt_of_eq {A : Type} [s : has_lt A] {a b c : A} (H1 : a < b) (H2 : b = c) :
a < c := H2 ▸ H1
calc_trans le_of_eq_of_le
calc_trans le_of_le_of_eq
calc_trans lt_of_eq_of_lt
calc_trans lt_of_lt_of_eq
/- weak orders -/
structure weak_order [class] (A : Type) extends has_le A :=
(le_refl : ∀a, le a a)
(le_trans : ∀a b c, le a b → le b c → le a c)
(le_antisym : ∀a b, le a b → le b a → a = b)
theorem le.refl [s : weak_order A] (a : A) : a ≤ a := !weak_order.le_refl
theorem le.trans [s : weak_order A] {a b c : A} : a ≤ b → b ≤ c → a ≤ c := !weak_order.le_trans
calc_trans le.trans
theorem le.antisym [s : weak_order A] {a b : A} : a ≤ b → b ≤ a → a = b := !weak_order.le_antisym
structure linear_weak_order [class] (A : Type) extends weak_order A :=
(le_total : ∀a b, le a b le b a)
theorem le.total [s : linear_weak_order A] (a b : A) : a ≤ b b ≤ a :=
!linear_weak_order.le_total
/- strict orders -/
structure strict_order [class] (A : Type) extends has_lt A :=
(lt_irrefl : ∀a, ¬ lt a a)
(lt_trans : ∀a b c, lt a b → lt b c → lt a c)
theorem lt.irrefl [s : strict_order A] (a : A) : ¬ a < a := !strict_order.lt_irrefl
theorem lt.trans [s : strict_order A] {a b c : A} : a < b → b < c → a < c := !strict_order.lt_trans
calc_trans lt.trans
theorem lt.ne [s : strict_order A] {a b : A} : a < b → a ≠ b :=
assume lt_ab : a < b, assume eq_ab : a = b, lt.irrefl a (eq_ab⁻¹ ▸ lt_ab)
/- well-founded orders -/
-- TODO: do these duplicate what Leo has done? if so, eliminate
structure wf_strict_order [class] (A : Type) extends strict_order A :=
(wf_rec : ∀P : A → Type, (∀x, (∀y, lt y x → P y) → P x) → ∀x, P x)
definition wf.rec_on {A : Type} [s : wf_strict_order A] {P : A → Type}
(x : A) (H : ∀x, (∀y, wf_strict_order.lt y x → P y) → P x) : P x :=
wf_strict_order.wf_rec P H x
theorem wf.ind_on.{u v} {A : Type.{u}} [s : wf_strict_order.{u 0} A] {P : A → Prop}
(x : A) (H : ∀x, (∀y, wf_strict_order.lt y x → P y) → P x) : P x :=
wf.rec_on x H
/- structures with a weak and a strict order -/
structure order_pair [class] (A : Type) extends weak_order A, has_lt A :=
(lt_iff_le_ne : ∀a b, lt a b ↔ (le a b ∧ a ≠ b))
section
variable [s : order_pair A]
variables {a b c : A}
include s
theorem lt_iff_le_and_ne : a < b ↔ (a ≤ b ∧ a ≠ b) :=
!order_pair.lt_iff_le_ne
theorem le_of_lt (H : a < b) : a ≤ b :=
and.elim_left (iff.mp lt_iff_le_and_ne H)
theorem lt_of_le_of_ne (H1 : a ≤ b) (H2 : a ≠ b) : a < b :=
iff.mp (iff.symm lt_iff_le_and_ne) (and.intro H1 H2)
definition order_pair.to_strict_order [instance] [s : order_pair A] : strict_order A :=
strict_order.mk
order_pair.lt
(show ∀a, ¬ a < a, from
take a,
assume H : a < a,
have H1 : a ≠ a, from and.elim_right (iff.mp !lt_iff_le_and_ne H),
H1 rfl)
(show ∀a b c, a < b → b < c → a < c, from
take a b c,
assume lt_ab : a < b,
have le_ab : a ≤ b, from le_of_lt lt_ab,
assume lt_bc : b < c,
have le_bc : b ≤ c, from le_of_lt lt_bc,
have le_ac : a ≤ c, from le.trans le_ab le_bc,
have ne_ac : a ≠ c, from
assume eq_ac : a = c,
have le_ba : b ≤ a, from eq_ac⁻¹ ▸ le_bc,
have eq_ab : a = b, from le.antisym le_ab le_ba,
have ne_ab : a ≠ b, from and.elim_right (iff.mp lt_iff_le_and_ne lt_ab),
ne_ab eq_ab,
show a < c, from lt_of_le_of_ne le_ac ne_ac)
theorem lt_of_lt_of_le : a < b → b ≤ c → a < c :=
assume lt_ab : a < b,
assume le_bc : b ≤ c,
have le_ac : a ≤ c, from le.trans (le_of_lt lt_ab) le_bc,
have ne_ac : a ≠ c, from
assume eq_ac : a = c,
have le_ba : b ≤ a, from eq_ac⁻¹ ▸ le_bc,
have eq_ab : a = b, from le.antisym (le_of_lt lt_ab) le_ba,
show false, from lt.ne lt_ab eq_ab,
show a < c, from lt_of_le_of_ne le_ac ne_ac
theorem lt_of_le_of_lt : a ≤ b → b < c → a < c :=
assume le_ab : a ≤ b,
assume lt_bc : b < c,
have le_ac : a ≤ c, from le.trans le_ab (le_of_lt lt_bc),
have ne_ac : a ≠ c, from
assume eq_ac : a = c,
have le_cb : c ≤ b, from eq_ac ▸ le_ab,
have eq_bc : b = c, from le.antisym (le_of_lt lt_bc) le_cb,
show false, from lt.ne lt_bc eq_bc,
show a < c, from lt_of_le_of_ne le_ac ne_ac
calc_trans lt_of_lt_of_le
calc_trans lt_of_le_of_lt
theorem not_le_of_lt (H : a < b) : ¬ b ≤ a :=
assume H1 : b ≤ a,
lt.irrefl _ (lt_of_lt_of_le H H1)
theorem not_lt_of_le (H : a ≤ b) : ¬ b < a :=
assume H1 : b < a,
lt.irrefl _ (lt_of_le_of_lt H H1)
theorem not_lt_of_lt (H : a < b) : ¬ b < a :=
assume H1 : b < a,
lt.irrefl _ (lt.trans H1 H)
end
structure strong_order_pair [class] (A : Type) extends order_pair A :=
(le_iff_lt_or_eq : ∀a b, le a b ↔ lt a b a = b)
theorem le_iff_lt_or_eq [s : strong_order_pair A] {a b : A} : a ≤ b ↔ a < b a = b :=
!strong_order_pair.le_iff_lt_or_eq
theorem le_imp_lt_or_eq [s : strong_order_pair A] {a b : A} (le_ab : a ≤ b) : a < b a = b :=
iff.mp le_iff_lt_or_eq le_ab
-- We can also construct a strong order pair by defining a strict order, and then defining
-- x ≤ y ↔ x < y x = y
structure strict_order_with_le [class] (A : Type) extends strict_order A, has_le A :=
(le_iff_lt_or_eq : ∀a b, le a b ↔ lt a b a = b)
definition strict_order_with_le.to_order_pair [instance] [s : strict_order_with_le A] :
strong_order_pair A :=
strong_order_pair.mk strict_order_with_le.le
(take a,
show a ≤ a, from iff.mp (iff.symm !strict_order_with_le.le_iff_lt_or_eq) (or.intro_right _ rfl))
(take a b c,
assume le_ab : a ≤ b,
assume le_bc : b ≤ c,
show a ≤ c, from
or.elim (iff.mp !strict_order_with_le.le_iff_lt_or_eq le_ab)
(assume lt_ab : a < b,
or.elim (iff.mp !strict_order_with_le.le_iff_lt_or_eq le_bc)
(assume lt_bc : b < c,
iff.elim_right
!strict_order_with_le.le_iff_lt_or_eq (or.intro_left _ (lt.trans lt_ab lt_bc)))
(assume eq_bc : b = c, eq_bc ▸ le_ab))
(assume eq_ab : a = b,
eq_ab⁻¹ ▸ le_bc))
(take a b,
assume le_ab : a ≤ b,
assume le_ba : b ≤ a,
show a = b, from
or.elim (iff.mp !strict_order_with_le.le_iff_lt_or_eq le_ab)
(assume lt_ab : a < b,
or.elim (iff.mp !strict_order_with_le.le_iff_lt_or_eq le_ba)
(assume lt_ba : b < a, absurd (lt.trans lt_ab lt_ba) (lt.irrefl a))
(assume eq_ba : b = a, eq_ba⁻¹))
(assume eq_ab : a = b, eq_ab))
strict_order_with_le.lt
(take a b,
iff.intro
(assume lt_ab : a < b,
have le_ab : a ≤ b,
from iff.elim_right !strict_order_with_le.le_iff_lt_or_eq (or.intro_left _ lt_ab),
show a ≤ b ∧ a ≠ b, from and.intro le_ab (lt.ne lt_ab))
(assume H : a ≤ b ∧ a ≠ b,
have H1 : a < b a = b,
from iff.mp !strict_order_with_le.le_iff_lt_or_eq (and.elim_left H),
show a < b, from or.resolve_left H1 (and.elim_right H)))
strict_order_with_le.le_iff_lt_or_eq
/- linear orders -/
structure linear_order_pair [class] (A : Type) extends order_pair A, linear_weak_order A
structure linear_strong_order_pair [class] (A : Type) extends strong_order_pair A :=
(lt_or_eq_or_lt : ∀a b, lt a b a = b lt b a)
section
variable [s : linear_strong_order_pair A]
variables (a b c : A)
include s
theorem lt_or_eq_or_lt : a < b a = b b < a := !linear_strong_order_pair.lt_or_eq_or_lt
theorem lt_or_eq_or_lt_cases {a b : A} {P : Prop}
(H1 : a < b → P) (H2 : a = b → P) (H3 : b < a → P) : P :=
or.elim !lt_or_eq_or_lt (assume H, H1 H) (assume H, or.elim H (assume H', H2 H') (assume H', H3 H'))
definition linear_strong_order_pair.to_linear_order_pair [instance] [s : linear_strong_order_pair A] :
linear_order_pair A :=
linear_order_pair.mk linear_strong_order_pair.le linear_strong_order_pair.le_refl
linear_strong_order_pair.le_trans linear_strong_order_pair.le_antisym linear_strong_order_pair.lt
linear_strong_order_pair.lt_iff_le_ne
(take a b : A,
lt_or_eq_or_lt_cases
(assume H : a < b, or.inl (le_of_lt H))
(assume H1 : a = b, or.inl (H1 ▸ !le.refl))
(assume H1 : b < a, or.inr (le_of_lt H1)))
definition le_of_not_lt {a b : A} (H : ¬ a < b) : b ≤ a :=
lt_or_eq_or_lt_cases (assume H', absurd H' H) (assume H', H' ▸ !le.refl) (assume H', le_of_lt H')
definition lt_of_not_le {a b : A} (H : ¬ a ≤ b) : b < a :=
lt_or_eq_or_lt_cases
(assume H', absurd (le_of_lt H') H)
(assume H', absurd (H' ▸ !le.refl) H)
(assume H', H')
end
end algebra