lean2/library/data/nat/sqrt.lean

167 lines
6.8 KiB
Text
Raw Normal View History

/-
Copyright (c) 2015 Microsoft Corporation. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Leonardo de Moura
Very simple (sqrt n) function that returns s s.t.
s*s ≤ n ≤ s*s + s + s
-/
import data.nat.order data.nat.sub
namespace nat
open decidable
open algebra
-- This is the simplest possible function that just performs a linear search
definition sqrt_aux : nat → nat → nat
| 0 n := 0
| (succ s) n := if (succ s)*(succ s) ≤ n then succ s else sqrt_aux s n
theorem sqrt_aux_succ_of_pos {s n} : (succ s)*(succ s) ≤ n → sqrt_aux (succ s) n = (succ s) :=
assume h, if_pos h
theorem sqrt_aux_succ_of_neg {s n} : ¬ (succ s)*(succ s) ≤ n → sqrt_aux (succ s) n = sqrt_aux s n :=
assume h, if_neg h
theorem sqrt_aux_of_le : ∀ {s n : nat}, s * s ≤ n → sqrt_aux s n = s
| 0 n h := rfl
| (succ s) n h := by rewrite [sqrt_aux_succ_of_pos h]
theorem sqrt_aux_le : ∀ (s n), sqrt_aux s n ≤ s
| 0 n := !zero_le
| (succ s) n := or.elim (em ((succ s)*(succ s) ≤ n))
(λ h, begin unfold sqrt_aux, rewrite [if_pos h] end)
(λ h,
assert sqrt_aux s n ≤ succ s, from le.step (sqrt_aux_le s n),
begin unfold sqrt_aux, rewrite [if_neg h], assumption end)
definition sqrt (n : nat) : nat :=
sqrt_aux n n
theorem sqrt_aux_lower : ∀ {s n : nat}, s ≤ n → sqrt_aux s n * sqrt_aux s n ≤ n
| 0 n h := h
| (succ s) n h := by_cases
(λ h₁ : (succ s)*(succ s) ≤ n, by rewrite [sqrt_aux_succ_of_pos h₁]; exact h₁)
(λ h₂ : ¬ (succ s)*(succ s) ≤ n,
assert aux : s ≤ n, from le_of_succ_le h,
by rewrite [sqrt_aux_succ_of_neg h₂]; exact (sqrt_aux_lower aux))
theorem sqrt_lower (n : nat) : sqrt n * sqrt n ≤ n :=
sqrt_aux_lower (le.refl n)
theorem sqrt_aux_upper : ∀ {s n : nat}, n ≤ s*s + s + s → n ≤ sqrt_aux s n * sqrt_aux s n + sqrt_aux s n + sqrt_aux s n
| 0 n h := h
| (succ s) n h := by_cases
(λ h₁ : (succ s)*(succ s) ≤ n,
by rewrite [sqrt_aux_succ_of_pos h₁]; exact h)
(λ h₂ : ¬ (succ s)*(succ s) ≤ n,
assert h₃ : n < (succ s) * (succ s), from lt_of_not_ge h₂,
assert h₄ : n ≤ s * s + s + s, by rewrite [succ_mul_succ_eq at h₃]; exact le_of_lt_succ h₃,
by rewrite [sqrt_aux_succ_of_neg h₂]; exact (sqrt_aux_upper h₄))
theorem sqrt_upper (n : nat) : n ≤ sqrt n * sqrt n + sqrt n + sqrt n :=
have aux : n ≤ n*n + n + n, from le_add_of_le_right (le_add_of_le_left (le.refl n)),
sqrt_aux_upper aux
private theorem le_squared : ∀ (n : nat), n ≤ n*n
| 0 := !le.refl
| (succ n) :=
have aux₁ : 1 ≤ succ n, from succ_le_succ !zero_le,
assert aux₂ : 1 * succ n ≤ succ n * succ n, from nat.mul_le_mul aux₁ !le.refl,
by rewrite [one_mul at aux₂]; exact aux₂
2015-10-12 03:29:31 +00:00
private theorem lt_squared : ∀ {n : nat}, n > 1 → n < n * n
| 0 h := absurd h dec_trivial
| 1 h := absurd h dec_trivial
| (succ (succ n)) h :=
have 1 < succ (succ n), from dec_trivial,
assert succ (succ n) * 1 < succ (succ n) * succ (succ n), from mul_lt_mul_of_pos_left this dec_trivial,
by rewrite [mul_one at this]; exact this
theorem sqrt_le (n : nat) : sqrt n ≤ n :=
calc sqrt n ≤ sqrt n * sqrt n : le_squared
... ≤ n : sqrt_lower
theorem eq_zero_of_sqrt_eq_zero {n : nat} : sqrt n = 0 → n = 0 :=
suppose sqrt n = 0,
assert n ≤ sqrt n * sqrt n + sqrt n + sqrt n, from !sqrt_upper,
have n ≤ 0, by rewrite [*`sqrt n = 0` at this]; exact this,
eq_zero_of_le_zero this
theorem le_three_of_sqrt_eq_one {n : nat} : sqrt n = 1 → n ≤ 3 :=
suppose sqrt n = 1,
assert n ≤ sqrt n * sqrt n + sqrt n + sqrt n, from !sqrt_upper,
show n ≤ 3, by rewrite [*`sqrt n = 1` at this]; exact this
theorem sqrt_lt : ∀ {n : nat}, n > 1 → sqrt n < n
| 0 h := absurd h dec_trivial
| 1 h := absurd h dec_trivial
| 2 h := dec_trivial
| 3 h := dec_trivial
| (n+4) h :=
have sqrt (n+4) > 1, from by_contradiction
(suppose ¬ sqrt (n+4) > 1,
have sqrt (n+4) ≤ 1, from le_of_not_gt this,
or.elim (eq_or_lt_of_le this)
(suppose sqrt (n+4) = 1,
have n+4 ≤ 3, from le_three_of_sqrt_eq_one this,
absurd this dec_trivial)
(suppose sqrt (n+4) < 1,
have sqrt (n+4) = 0, from eq_zero_of_le_zero (le_of_lt_succ this),
have n + 4 = 0, from eq_zero_of_sqrt_eq_zero this,
absurd this dec_trivial)),
calc sqrt (n+4) < sqrt (n+4) * sqrt (n+4) : lt_squared this
... ≤ n+4 : sqrt_lower
theorem sqrt_pos_of_pos {n : nat} : n > 0 → sqrt n > 0 :=
suppose n > 0,
have sqrt n ≠ 0, from
suppose sqrt n = 0,
assert n = 0, from eq_zero_of_sqrt_eq_zero this,
by subst n; exact absurd `0 > 0` !lt.irrefl,
pos_of_ne_zero this
theorem sqrt_aux_offset_eq {n k : nat} (h₁ : k ≤ n + n) : ∀ {s}, s ≥ n → sqrt_aux s (n*n + k) = n
| 0 h₂ :=
assert neqz : n = 0, from eq_zero_of_le_zero h₂,
by rewrite neqz
| (succ s) h₂ := by_cases
(λ hl : (succ s)*(succ s) ≤ n*n + k,
have l₁ : n*n + k ≤ n*n + n + n, from by rewrite [add.assoc]; exact (add_le_add_left h₁ (n*n)),
assert l₂ : n*n + k < n*n + n + n + 1, from lt_succ_of_le l₁,
have l₃ : n*n + k < (succ n)*(succ n), by rewrite [-succ_mul_succ_eq at l₂]; exact l₂,
assert l₄ : (succ s)*(succ s) < (succ n)*(succ n), from lt_of_le_of_lt hl l₃,
have ng : ¬ succ s > (succ n), from
assume g : succ s > succ n,
have g₁ : (succ s)*(succ s) > (succ n)*(succ n), from mul_lt_mul_of_le_of_le g g,
absurd (lt.trans g₁ l₄) !lt.irrefl,
have sslesn : succ s ≤ succ n, from le_of_not_gt ng,
have ssnesn : succ s ≠ succ n, from
assume sseqsn : succ s = succ n,
by rewrite [sseqsn at l₄]; exact (absurd l₄ !lt.irrefl),
have sslen : s < n, from lt_of_succ_lt_succ (lt_of_le_of_ne sslesn ssnesn),
assert sseqn : succ s = n, from le.antisymm sslen h₂,
by rewrite [sqrt_aux_succ_of_pos hl]; exact sseqn)
(λ hg : ¬ (succ s)*(succ s) ≤ n*n + k,
or.elim (eq_or_lt_of_le h₂)
(λ neqss : n = succ s,
have p : n*n ≤ n*n + k, from !le_add_right,
have n : ¬ n*n ≤ n*n + k, by rewrite [-neqss at hg]; exact hg,
absurd p n)
(λ sgen : succ s > n,
by rewrite [sqrt_aux_succ_of_neg hg]; exact (sqrt_aux_offset_eq (le_of_lt_succ sgen))))
theorem sqrt_offset_eq {n k : nat} : k ≤ n + n → sqrt (n*n + k) = n :=
assume h,
have h₁ : n ≤ n*n + k, from le.trans !le_squared !le_add_right,
sqrt_aux_offset_eq h h₁
theorem sqrt_eq (n : nat) : sqrt (n*n) = n :=
sqrt_offset_eq !zero_le
theorem mul_square_cancel {a b : nat} : a*a = b*b → a = b :=
assume h,
assert aux : sqrt (a*a) = sqrt (b*b), by rewrite h,
by rewrite [*sqrt_eq at aux]; exact aux
end nat