2014-01-30 02:32:40 +00:00
|
|
|
|
Set: pp::colors
|
|
|
|
|
Set: pp::unicode
|
|
|
|
|
Assumed: bracket
|
|
|
|
|
Assumed: bracket_eq
|
2014-02-02 02:27:14 +00:00
|
|
|
|
not_false : (¬ ⊥) = ⊤
|
|
|
|
|
not_true : (¬ ⊤) = ⊥
|
2014-01-30 02:32:40 +00:00
|
|
|
|
Nat::mul_comm : ∀ a b : ℕ, a * b = b * a
|
|
|
|
|
Nat::add_assoc : ∀ a b c : ℕ, a + b + c = a + (b + c)
|
|
|
|
|
Nat::add_comm : ∀ a b : ℕ, a + b = b + a
|
|
|
|
|
Nat::add_zeror : ∀ a : ℕ, a + 0 = a
|
2014-02-02 02:27:14 +00:00
|
|
|
|
forall_rem [check] : ∀ (A : TypeU) (H : inhabited A) (p : Bool), (A → p) ↔ p
|
|
|
|
|
eq_id : ∀ (A : (Type U)) (a : A), a = a ↔ ⊤
|
|
|
|
|
exists_rem : ∀ (A : TypeU) (H : inhabited A) (p : Bool), (∃ x : A, p) ↔ p
|
2014-01-30 02:32:40 +00:00
|
|
|
|
exists_and_distributel : ∀ (A : TypeU) (p : Bool) (φ : A → Bool),
|
|
|
|
|
(∃ x : A, φ x ∧ p) ↔ (∃ x : A, φ x) ∧ p
|
|
|
|
|
exists_or_distribute : ∀ (A : TypeU) (φ ψ : A → Bool),
|
|
|
|
|
(∃ x : A, φ x ∨ ψ x) ↔ (∃ x : A, φ x) ∨ (∃ x : A, ψ x)
|
|
|
|
|
not_and : ∀ a b : Bool, ¬ (a ∧ b) ↔ ¬ a ∨ ¬ b
|
|
|
|
|
not_neq : ∀ (A : TypeU) (a b : A), ¬ a ≠ b ↔ a = b
|
2014-02-02 02:27:14 +00:00
|
|
|
|
not_true : (¬ ⊤) = ⊥
|
2014-01-30 02:32:40 +00:00
|
|
|
|
and_comm : ∀ a b : Bool, a ∧ b ↔ b ∧ a
|
|
|
|
|
and_truer : ∀ a : Bool, a ∧ ⊤ ↔ a
|
|
|
|
|
bracket_eq [check] : ∀ a : Bool, bracket a = a
|