lean2/hott/types/unit.hlean

51 lines
1.1 KiB
Text
Raw Normal View History

/-
Copyright (c) 2015 Floris van Doorn. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Floris van Doorn
Theorems about the unit type
-/
import algebra.group
open equiv option eq
namespace unit
protected definition eta : Π(u : unit), ⋆ = u
| eta ⋆ := idp
definition unit_equiv_option_empty : unit ≃ option empty :=
begin
fapply equiv.MK,
{ intro u, exact none},
{ intro e, exact star},
{ intro e, cases e, reflexivity, contradiction},
{ intro u, cases u, reflexivity},
end
definition unit_imp_equiv (A : Type) : (unit → A) ≃ A :=
begin
fapply equiv.MK,
{ intro f, exact f star},
{ intro a u, exact a},
{ intro a, reflexivity},
{ intro f, apply eq_of_homotopy, intro u, cases u, reflexivity},
end
end unit
open unit is_trunc
namespace algebra
definition trivial_group [constructor] : group unit :=
group.mk (λx y, star) _ (λx y z, idp) star (unit.rec idp) (unit.rec idp) (λx, star) (λx, idp)
definition Trivial_group [constructor] : Group :=
Group.mk _ trivial_group
notation `G0` := Trivial_group
end algebra