23 lines
752 B
Text
23 lines
752 B
Text
|
import logic data.nat.basic
|
||
|
open nat
|
||
|
|
||
|
inductive inftree (A : Type) : Type :=
|
||
|
leaf : A → inftree A,
|
||
|
node : (nat → inftree A) → inftree A → inftree A
|
||
|
|
||
|
namespace inftree
|
||
|
inductive dsub {A : Type} : inftree A → inftree A → Prop :=
|
||
|
intro₁ : Π (f : nat → inftree A) (a : nat) (t : inftree A), dsub (f a) (node f t),
|
||
|
intro₂ : Π (f : nat → inftree A) (t : inftree A), dsub t (node f t)
|
||
|
|
||
|
definition dsub.node.acc {A : Type} (f : nat → inftree A) (hf : ∀a, acc dsub (f a))
|
||
|
(t : inftree A) (ht : acc dsub t) : acc dsub (node f t) :=
|
||
|
acc.intro (node f t) (λ (y : inftree A) (hlt : dsub y (node f t)),
|
||
|
begin
|
||
|
inversion hlt,
|
||
|
apply (hf a),
|
||
|
apply ht
|
||
|
end)
|
||
|
|
||
|
end inftree
|