lean2/tests/lean/run/blast_ematch8.lean

51 lines
1.5 KiB
Text
Raw Normal View History

import algebra.group
open algebra
variables {A : Type}
variables [s : group A]
include s
namespace foo
set_option blast.ematch true
set_option blast.subst false
set_option blast.simp false
attribute inv_inv mul.left_inv mul.assoc one_mul mul_one [forward]
theorem mul.right_inv (a : A) : a * a⁻¹ = 1 :=
calc
a * a⁻¹ = (a⁻¹)⁻¹ * a⁻¹ : by blast
... = 1 : by blast
theorem mul.right_inv₂ (a : A) : a * a⁻¹ = 1 :=
by blast
theorem mul_inv_cancel_left (a b : A) : a * (a⁻¹ * b) = b :=
calc
a * (a⁻¹ * b) = a * a⁻¹ * b : by blast
... = 1 * b : by blast
... = b : by blast
theorem mul_inv_cancel_left₂ (a b : A) : a * (a⁻¹ * b) = b :=
by blast
theorem mul_inv (a b : A) : (a * b)⁻¹ = b⁻¹ * a⁻¹ :=
inv_eq_of_mul_eq_one
(calc
a * b * (b⁻¹ * a⁻¹) = a * (b * (b⁻¹ * a⁻¹)) : by blast
... = 1 : by blast)
theorem eq_of_mul_inv_eq_one {a b : A} (H : a * b⁻¹ = 1) : a = b :=
calc
a = a * b⁻¹ * b : by blast
... = 1 * b : by blast
... = b : by blast
-- This is another theorem that can be easily proved using superposition,
-- but cannot to be proved using E-matching.
-- To prove it using E-matching, we must provide the following auxiliary step using calc.
theorem eq_of_mul_inv_eq_one₂ {a b : A} (H : a * b⁻¹ = 1) : a = b :=
calc
a = a * b⁻¹ * b : by blast
... = b : by blast
end foo