62 lines
2.7 KiB
Text
62 lines
2.7 KiB
Text
|
/-
|
|||
|
Copyright (c) 2015 Microsoft Corporation. All rights reserved.
|
|||
|
Released under Apache 2.0 license as described in the file LICENSE.
|
|||
|
Author: Jeremy Avigad
|
|||
|
|
|||
|
Cardinality calculations for finite sets.
|
|||
|
-/
|
|||
|
import data.finset.comb
|
|||
|
open nat eq.ops
|
|||
|
|
|||
|
namespace finset
|
|||
|
|
|||
|
variable {A : Type}
|
|||
|
variable [deceq : decidable_eq A]
|
|||
|
include deceq
|
|||
|
|
|||
|
theorem card_add_card (s₁ s₂ : finset A) : card s₁ + card s₂ = card (s₁ ∪ s₂) + card (s₁ ∩ s₂) :=
|
|||
|
finset.induction_on s₂
|
|||
|
(show card s₁ + card ∅ = card (s₁ ∪ ∅) + card (s₁ ∩ ∅),
|
|||
|
by rewrite [union_empty, card_empty, inter_empty])
|
|||
|
(take s₂ a,
|
|||
|
assume ans2: a ∉ s₂,
|
|||
|
assume IH : card s₁ + card s₂ = card (s₁ ∪ s₂) + card (s₁ ∩ s₂),
|
|||
|
show card s₁ + card (insert a s₂) = card (s₁ ∪ (insert a s₂)) + card (s₁ ∩ (insert a s₂)),
|
|||
|
from decidable.by_cases
|
|||
|
(assume as1 : a ∈ s₁,
|
|||
|
assert H : a ∉ s₁ ∩ s₂, from assume H', ans2 (mem_of_mem_inter_right H'),
|
|||
|
begin
|
|||
|
rewrite [card_insert_of_not_mem ans2, union.comm, -insert_union, union.comm],
|
|||
|
rewrite [insert_union, insert_eq_of_mem as1, insert_eq, inter.distrib_left, inter.comm],
|
|||
|
rewrite [singleton_inter_of_mem as1, -insert_eq, card_insert_of_not_mem H, -*add.assoc],
|
|||
|
rewrite IH
|
|||
|
end)
|
|||
|
(assume ans1 : a ∉ s₁,
|
|||
|
assert H : a ∉ s₁ ∪ s₂, from assume H',
|
|||
|
or.elim (mem_or_mem_of_mem_union H') (assume as1, ans1 as1) (assume as2, ans2 as2),
|
|||
|
begin
|
|||
|
rewrite [card_insert_of_not_mem ans2, union.comm, -insert_union, union.comm],
|
|||
|
rewrite [card_insert_of_not_mem H, insert_eq, inter.distrib_left, inter.comm],
|
|||
|
rewrite [singleton_inter_of_not_mem ans1, empty_union, add.right_comm],
|
|||
|
rewrite [-add.assoc, IH]
|
|||
|
end))
|
|||
|
|
|||
|
theorem card_union (s₁ s₂ : finset A) : card (s₁ ∪ s₂) = card s₁ + card s₂ - card (s₁ ∩ s₂) :=
|
|||
|
calc
|
|||
|
card (s₁ ∪ s₂) = card (s₁ ∪ s₂) + card (s₁ ∩ s₂) - card (s₁ ∩ s₂) : add_sub_cancel
|
|||
|
... = card s₁ + card s₂ - card (s₁ ∩ s₂) : card_add_card
|
|||
|
|
|||
|
theorem card_union_of_disjoint {s₁ s₂ : finset A} (H : disjoint s₁ s₂) :
|
|||
|
card (s₁ ∪ s₂) = card s₁ + card s₂ :=
|
|||
|
by rewrite [card_union, ↑disjoint at H, inter_empty_of_disjoint H]
|
|||
|
|
|||
|
theorem card_le_card_of_subset {s₁ s₂ : finset A} (H : s₁ ⊆ s₂) : card s₁ ≤ card s₂ :=
|
|||
|
have H1 : disjoint s₁ (s₂ \ s₁),
|
|||
|
from disjoint.intro (take x, assume H1 H2, not_mem_of_mem_diff H2 H1),
|
|||
|
calc
|
|||
|
card s₂ = card (s₁ ∪ (s₂ \ s₁)) : union_diff_cancel H
|
|||
|
... = card s₁ + card (s₂ \ s₁) : card_union_of_disjoint H1
|
|||
|
... ≥ card s₁ : le_add_right
|
|||
|
|
|||
|
end finset
|