lean2/library/init/datatypes.lean

73 lines
1.7 KiB
Text
Raw Normal View History

2014-12-01 04:34:12 +00:00
/-
Copyright (c) 2014 Microsoft Corporation. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Leonardo de Moura
Basic datatypes
-/
prelude
notation `Prop` := Type.{0}
notation [parsing-only] `Type'` := Type.{_+1}
notation [parsing-only] `Type₊` := Type.{_+1}
notation `Type₁` := Type.{1}
notation `Type₂` := Type.{2}
notation `Type₃` := Type.{3}
inductive unit.{l} : Type.{l} :=
star : unit
inductive true : Prop :=
intro : true
inductive false : Prop
inductive empty : Type
inductive eq {A : Type} (a : A) : A → Prop :=
refl : eq a a
inductive heq {A : Type} (a : A) : Π {B : Type}, B → Prop :=
refl : heq a a
structure prod (A B : Type) :=
mk :: (pr1 : A) (pr2 : B)
inductive and (a b : Prop) : Prop :=
intro : a → b → and a b
inductive sum (A B : Type) : Type :=
inl : A → sum A B,
inr : B → sum A B
inductive or (a b : Prop) : Prop :=
intro_left : a → or a b,
intro_right : b → or a b
-- pos_num and num are two auxiliary datatypes used when parsing numerals such as 13, 0, 26.
-- The parser will generate the terms (pos (bit1 (bit1 (bit0 one)))), zero, and (pos (bit0 (bit1 (bit1 one)))).
-- This representation can be coerced in whatever we want (e.g., naturals, integers, reals, etc).
inductive pos_num : Type :=
one : pos_num,
bit1 : pos_num → pos_num,
bit0 : pos_num → pos_num
inductive num : Type :=
zero : num,
pos : pos_num → num
inductive bool : Type :=
ff : bool,
tt : bool
inductive char : Type :=
mk : bool → bool → bool → bool → bool → bool → bool → bool → char
inductive string : Type :=
empty : string,
str : char → string → string
inductive nat :=
zero : nat,
succ : nat → nat