lean2/library/algebra/category/constructions.lean

375 lines
16 KiB
Text
Raw Normal View History

-- Copyright (c) 2014 Floris van Doorn. All rights reserved.
-- Released under Apache 2.0 license as described in the file LICENSE.
-- Author: Floris van Doorn
-- This file contains basic constructions on categories, including common categories
import .natural_transformation
import data.unit data.sigma data.prod data.empty data.bool
open eq eq.ops prod
namespace category
namespace opposite
section
definition opposite [reducible] {ob : Type} (C : category ob) : category ob :=
mk (λa b, hom b a)
(λ a b c f g, g ∘ f)
(λ a, id)
(λ a b c d f g h, symm !assoc)
(λ a b f, !id_right)
(λ a b f, !id_left)
definition Opposite [reducible] (C : Category) : Category := Mk (opposite C)
--direct construction:
-- MK C
-- (λa b, hom b a)
-- (λ a b c f g, g ∘ f)
-- (λ a, id)
-- (λ a b c d f g h, symm !assoc)
-- (λ a b f, !id_right)
-- (λ a b f, !id_left)
infixr `∘op`:60 := @compose _ (opposite _) _ _ _
variables {C : Category} {a b c : C}
theorem compose_op {f : hom a b} {g : hom b c} : f ∘op g = g ∘ f := rfl
theorem op_op' {ob : Type} (C : category ob) : opposite (opposite C) = C :=
category.rec (λ hom comp id assoc idl idr, refl (mk _ _ _ _ _ _)) C
theorem op_op : Opposite (Opposite C) = C :=
(@congr_arg _ _ _ _ (Category.mk C) (op_op' C)) ⬝ !Category.equal
end
end opposite
definition type_category [reducible] : category Type :=
mk (λa b, a → b)
(λ a b c, function.compose)
(λ a, function.id)
(λ a b c d h g f, symm (function.compose.assoc h g f))
(λ a b f, function.compose.left_id f)
(λ a b f, function.compose.right_id f)
definition Type_category [reducible] : Category := Mk type_category
section
open decidable unit empty
variables {A : Type} [H : decidable_eq A]
include H
definition set_hom [reducible] (a b : A) := decidable.rec_on (H a b) (λh, unit) (λh, empty)
theorem set_hom_subsingleton [instance] (a b : A) : subsingleton (set_hom a b) := _
definition set_compose [reducible] {a b c : A} (g : set_hom b c) (f : set_hom a b) : set_hom a c :=
decidable.rec_on
(H b c)
(λ Hbc g, decidable.rec_on
(H a b)
(λ Hab f, rec_on_true (trans Hab Hbc) ⋆)
(λh f, empty.rec _ f) f)
(λh (g : empty), empty.rec _ g) g
omit H
definition discrete_category (A : Type) [H : decidable_eq A] : category A :=
mk (λa b, set_hom a b)
(λ a b c g f, set_compose g f)
(λ a, decidable.rec_on_true rfl ⋆)
(λ a b c d h g f, @subsingleton.elim (set_hom a d) _ _ _)
(λ a b f, @subsingleton.elim (set_hom a b) _ _ _)
(λ a b f, @subsingleton.elim (set_hom a b) _ _ _)
local attribute discrete_category [reducible]
definition Discrete_category (A : Type) [H : decidable_eq A] := Mk (discrete_category A)
context
local attribute discrete_category [instance]
include H
theorem discrete_category.endomorphism {a b : A} (f : a ⟶ b) : a = b :=
decidable.rec_on (H a b) (λh f, h) (λh f, empty.rec _ f) f
theorem discrete_category.discrete {a b : A} (f : a ⟶ b)
: eq.rec_on (discrete_category.endomorphism f) f = (ID b) :=
@subsingleton.elim _ !set_hom_subsingleton _ _
definition discrete_category.rec_on {P : Πa b, a ⟶ b → Type} {a b : A} (f : a ⟶ b)
(H : ∀a, P a a id) : P a b f :=
cast (dcongr_arg3 P rfl (discrete_category.endomorphism f)⁻¹
(@subsingleton.elim _ !set_hom_subsingleton _ _))⁻¹ (H a)
end
end
section
open unit bool
definition category_one := discrete_category unit
definition Category_one := Mk category_one
definition category_two := discrete_category bool
definition Category_two := Mk category_two
end
namespace product
section
open prod
definition prod_category [reducible] {obC obD : Type} (C : category obC) (D : category obD)
: category (obC × obD) :=
mk (λa b, hom (pr1 a) (pr1 b) × hom (pr2 a) (pr2 b))
(λ a b c g f, (pr1 g ∘ pr1 f , pr2 g ∘ pr2 f) )
(λ a, (id,id))
(λ a b c d h g f, pair_eq !assoc !assoc )
(λ a b f, prod.equal !id_left !id_left )
(λ a b f, prod.equal !id_right !id_right)
definition Prod_category [reducible] (C D : Category) : Category := Mk (prod_category C D)
end
end product
namespace ops
notation `type`:max := Type_category
notation 1 := Category_one
notation 2 := Category_two
postfix `ᵒᵖ`:max := opposite.Opposite
infixr `×c`:30 := product.Prod_category
attribute type_category [instance]
attribute category_one [instance]
attribute category_two [instance]
attribute product.prod_category [instance]
end ops
open ops
namespace opposite
section
open functor
definition opposite_functor [reducible] {C D : Category} (F : C ⇒ D) : Cᵒᵖ ⇒ Dᵒᵖ :=
@functor.mk (Cᵒᵖ) (Dᵒᵖ)
(λ a, F a)
(λ a b f, F f)
(λ a, respect_id F a)
(λ a b c g f, respect_comp F f g)
end
end opposite
namespace product
section
open ops functor
definition prod_functor [reducible] {C C' D D' : Category} (F : C ⇒ D) (G : C' ⇒ D')
: C ×c C' ⇒ D ×c D' :=
functor.mk (λ a, pair (F (pr1 a)) (G (pr2 a)))
(λ a b f, pair (F (pr1 f)) (G (pr2 f)))
(λ a, pair_eq !respect_id !respect_id)
(λ a b c g f, pair_eq !respect_comp !respect_comp)
end
end product
namespace ops
infixr `×f`:30 := product.prod_functor
infixr `ᵒᵖᶠ`:max := opposite.opposite_functor
end ops
section functor_category
variables (C D : Category)
definition functor_category : category (functor C D) :=
mk (λa b, natural_transformation a b)
(λ a b c g f, natural_transformation.compose g f)
(λ a, natural_transformation.id)
(λ a b c d h g f, !natural_transformation.assoc)
(λ a b f, !natural_transformation.id_left)
(λ a b f, !natural_transformation.id_right)
end functor_category
namespace slice
open sigma function
variables {ob : Type} {C : category ob} {c : ob}
protected definition slice_obs (C : category ob) (c : ob) := Σ(b : ob), hom b c
variables {a b : slice_obs C c}
protected definition to_ob (a : slice_obs C c) : ob := sigma.pr1 a
protected definition to_ob_def (a : slice_obs C c) : to_ob a = sigma.pr1 a := rfl
protected definition ob_hom (a : slice_obs C c) : hom (to_ob a) c := sigma.pr2 a
-- protected theorem slice_obs_equal (H₁ : to_ob a = to_ob b)
-- (H₂ : eq.drec_on H₁ (ob_hom a) = ob_hom b) : a = b :=
-- sigma.equal H₁ H₂
protected definition slice_hom (a b : slice_obs C c) : Type :=
Σ(g : hom (to_ob a) (to_ob b)), ob_hom b ∘ g = ob_hom a
protected definition hom_hom (f : slice_hom a b) : hom (to_ob a) (to_ob b) := sigma.pr1 f
protected definition commute (f : slice_hom a b) : ob_hom b ∘ (hom_hom f) = ob_hom a := sigma.pr2 f
-- protected theorem slice_hom_equal (f g : slice_hom a b) (H : hom_hom f = hom_hom g) : f = g :=
-- sigma.equal H !proof_irrel
definition slice_category (C : category ob) (c : ob) : category (slice_obs C c) :=
mk (λa b, slice_hom a b)
(λ a b c g f, sigma.mk (hom_hom g ∘ hom_hom f)
(show ob_hom c ∘ (hom_hom g ∘ hom_hom f) = ob_hom a,
proof
calc
ob_hom c ∘ (hom_hom g ∘ hom_hom f) = (ob_hom c ∘ hom_hom g) ∘ hom_hom f : !assoc
... = ob_hom b ∘ hom_hom f : {commute g}
... = ob_hom a : {commute f}
qed))
(λ a, sigma.mk id !id_right)
(λ a b c d h g f, dpair_eq !assoc !proof_irrel)
(λ a b f, sigma.equal !id_left !proof_irrel)
(λ a b f, sigma.equal !id_right !proof_irrel)
-- We use !proof_irrel instead of rfl, to give the unifier an easier time
-- definition slice_category {ob : Type} (C : category ob) (c : ob) : category (Σ(b : ob), hom b c)
-- :=
-- mk (λa b, Σ(g : hom (dpr1 a) (dpr1 b)), dpr2 b ∘ g = dpr2 a)
-- (λ a b c g f, dpair (dpr1 g ∘ dpr1 f)
-- (show dpr2 c ∘ (dpr1 g ∘ dpr1 f) = dpr2 a,
-- proof
-- calc
-- dpr2 c ∘ (dpr1 g ∘ dpr1 f) = (dpr2 c ∘ dpr1 g) ∘ dpr1 f : !assoc
-- ... = dpr2 b ∘ dpr1 f : {dpr2 g}
-- ... = dpr2 a : {dpr2 f}
-- qed))
-- (λ a, dpair id !id_right)
-- (λ a b c d h g f, dpair_eq !assoc !proof_irrel)
-- (λ a b f, sigma.equal !id_left !proof_irrel)
-- (λ a b f, sigma.equal !id_right !proof_irrel)
-- We use !proof_irrel instead of rfl, to give the unifier an easier time
definition Slice_category [reducible] (C : Category) (c : C) := Mk (slice_category C c)
open category.ops
attribute slice_category [instance]
variables {D : Category}
definition forgetful (x : D) : (Slice_category D x) ⇒ D :=
functor.mk (λ a, to_ob a)
(λ a b f, hom_hom f)
(λ a, rfl)
(λ a b c g f, rfl)
definition postcomposition_functor {x y : D} (h : x ⟶ y)
: Slice_category D x ⇒ Slice_category D y :=
functor.mk
(λ a, sigma.mk (to_ob a) (h ∘ ob_hom a))
(λ a b f,
⟨hom_hom f,
calc
(h ∘ ob_hom b) ∘ hom_hom f = h ∘ (ob_hom b ∘ hom_hom f) : by rewrite assoc
... = h ∘ ob_hom a : by rewrite commute⟩)
(λ a, rfl)
(λ a b c g f, dpair_eq rfl !proof_irrel)
-- -- in the following comment I tried to have (A = B) in the type of a == b, but that doesn't solve the problems
-- definition heq2 {A B : Type} (H : A = B) (a : A) (b : B) := a == b
-- definition heq2.intro {A B : Type} {a : A} {b : B} (H : a == b) : heq2 (heq.type_eq H) a b := H
-- definition heq2.elim {A B : Type} {a : A} {b : B} (H : A = B) (H2 : heq2 H a b) : a == b := H2
-- definition heq2.proof_irrel {A B : Prop} (a : A) (b : B) (H : A = B) : heq2 H a b :=
-- hproof_irrel H a b
-- theorem functor.mk_eq2 {C D : Category} {obF obG : C → D} {homF homG idF idG compF compG}
-- (Hob : ∀x, obF x = obG x)
-- (Hmor : ∀(a b : C) (f : a ⟶ b), heq2 (congr_arg (λ x, x a ⟶ x b) (funext Hob)) (homF a b f) (homG a b f))
-- : functor.mk obF homF idF compF = functor.mk obG homG idG compG :=
-- hddcongr_arg4 functor.mk
-- (funext Hob)
-- (hfunext (λ a, hfunext (λ b, hfunext (λ f, !Hmor))))
-- !proof_irrel
-- !proof_irrel
-- set_option pp.implicit true
-- set_option pp.coercions true
-- definition slice_functor : D ⇒ Category_of_categories :=
-- functor.mk (λ a, Category.mk (slice_obs D a) (slice_category D a))
-- (λ a b f, postcomposition_functor f)
-- (λ a, functor.mk_heq
-- (λx, sigma.equal rfl !id_left)
-- (λb c f, sigma.hequal sorry !heq.refl (hproof_irrel sorry _ _)))
-- (λ a b c g f, functor.mk_heq
-- (λx, sigma.equal (sorry ⬝ refl (dpr1 x)) sorry)
-- (λb c f, sorry))
--the error message generated here is really confusing: the type of the above refl should be
-- "@dpr1 D (λ (a_1 : D), a_1 ⟶ a) x = @dpr1 D (λ (a_1 : D), a_1 ⟶ c) x", but the second dpr1 is not even well-typed
end slice
-- section coslice
-- open sigma
-- definition coslice {ob : Type} (C : category ob) (c : ob) : category (Σ(b : ob), hom c b) :=
-- mk (λa b, Σ(g : hom (dpr1 a) (dpr1 b)), g ∘ dpr2 a = dpr2 b)
-- (λ a b c g f, dpair (dpr1 g ∘ dpr1 f)
-- (show (dpr1 g ∘ dpr1 f) ∘ dpr2 a = dpr2 c,
-- proof
-- calc
-- (dpr1 g ∘ dpr1 f) ∘ dpr2 a = dpr1 g ∘ (dpr1 f ∘ dpr2 a): symm !assoc
-- ... = dpr1 g ∘ dpr2 b : {dpr2 f}
-- ... = dpr2 c : {dpr2 g}
-- qed))
-- (λ a, dpair id !id_left)
-- (λ a b c d h g f, dpair_eq !assoc !proof_irrel)
-- (λ a b f, sigma.equal !id_left !proof_irrel)
-- (λ a b f, sigma.equal !id_right !proof_irrel)
-- -- theorem slice_coslice_opp {ob : Type} (C : category ob) (c : ob) :
-- -- coslice C c = opposite (slice (opposite C) c) :=
-- -- sorry
-- end coslice
section arrow
open sigma eq.ops
-- theorem concat_commutative_squares {ob : Type} {C : category ob} {a1 a2 a3 b1 b2 b3 : ob}
-- {f1 : a1 => b1} {f2 : a2 => b2} {f3 : a3 => b3} {g2 : a2 => a3} {g1 : a1 => a2}
-- {h2 : b2 => b3} {h1 : b1 => b2} (H1 : f2 ∘ g1 = h1 ∘ f1) (H2 : f3 ∘ g2 = h2 ∘ f2)
-- : f3 ∘ (g2 ∘ g1) = (h2 ∘ h1) ∘ f1 :=
-- calc
-- f3 ∘ (g2 ∘ g1) = (f3 ∘ g2) ∘ g1 : assoc
-- ... = (h2 ∘ f2) ∘ g1 : {H2}
-- ... = h2 ∘ (f2 ∘ g1) : symm assoc
-- ... = h2 ∘ (h1 ∘ f1) : {H1}
-- ... = (h2 ∘ h1) ∘ f1 : assoc
-- definition arrow {ob : Type} (C : category ob) : category (Σ(a b : ob), hom a b) :=
-- mk (λa b, Σ(g : hom (dpr1 a) (dpr1 b)) (h : hom (dpr2' a) (dpr2' b)),
-- dpr3 b ∘ g = h ∘ dpr3 a)
-- (λ a b c g f, dpair (dpr1 g ∘ dpr1 f) (dpair (dpr2' g ∘ dpr2' f) (concat_commutative_squares (dpr3 f) (dpr3 g))))
-- (λ a, dpair id (dpair id (id_right ⬝ (symm id_left))))
-- (λ a b c d h g f, dtrip_eq2 assoc assoc !proof_irrel)
-- (λ a b f, trip.equal2 id_left id_left !proof_irrel)
-- (λ a b f, trip.equal2 id_right id_right !proof_irrel)
-- make these definitions private?
variables {ob : Type} {C : category ob}
protected definition arrow_obs (ob : Type) (C : category ob) := Σ(a b : ob), hom a b
variables {a b : arrow_obs ob C}
protected definition src (a : arrow_obs ob C) : ob := sigma.pr1 a
protected definition dst (a : arrow_obs ob C) : ob := sigma.pr2' a
protected definition to_hom (a : arrow_obs ob C) : hom (src a) (dst a) := sigma.pr3 a
protected definition arrow_hom (a b : arrow_obs ob C) : Type :=
Σ (g : hom (src a) (src b)) (h : hom (dst a) (dst b)), to_hom b ∘ g = h ∘ to_hom a
protected definition hom_src (m : arrow_hom a b) : hom (src a) (src b) := sigma.pr1 m
protected definition hom_dst (m : arrow_hom a b) : hom (dst a) (dst b) := sigma.pr2' m
protected definition commute (m : arrow_hom a b) : to_hom b ∘ (hom_src m) = (hom_dst m) ∘ to_hom a
:= sigma.pr3 m
definition arrow (ob : Type) (C : category ob) : category (arrow_obs ob C) :=
mk (λa b, arrow_hom a b)
(λ a b c g f, sigma.mk (hom_src g ∘ hom_src f) (sigma.mk (hom_dst g ∘ hom_dst f)
(show to_hom c ∘ (hom_src g ∘ hom_src f) = (hom_dst g ∘ hom_dst f) ∘ to_hom a,
proof
calc
to_hom c ∘ (hom_src g ∘ hom_src f) = (to_hom c ∘ hom_src g) ∘ hom_src f : by rewrite assoc
... = (hom_dst g ∘ to_hom b) ∘ hom_src f : by rewrite commute
... = hom_dst g ∘ (to_hom b ∘ hom_src f) : by rewrite assoc
... = hom_dst g ∘ (hom_dst f ∘ to_hom a) : by rewrite commute
... = (hom_dst g ∘ hom_dst f) ∘ to_hom a : by rewrite assoc
qed)
))
(λ a, sigma.mk id (sigma.mk id (!id_right ⬝ (symm !id_left))))
(λ a b c d h g f, ndtrip_eq !assoc !assoc !proof_irrel)
(λ a b f, ndtrip_equal !id_left !id_left !proof_irrel)
(λ a b f, ndtrip_equal !id_right !id_right !proof_irrel)
end arrow
end category
-- definition foo : category (sorry) :=
-- mk (λa b, sorry)
-- (λ a b c g f, sorry)
-- (λ a, sorry)
-- (λ a b c d h g f, sorry)
-- (λ a b f, sorry)
-- (λ a b f, sorry)