65 lines
2 KiB
Text
65 lines
2 KiB
Text
|
--- Copyright (c) 2014 Jeremy Avigad. All rights reserved.
|
|||
|
--- Released under Apache 2.0 license as described in the file LICENSE.
|
|||
|
--- Author: Jeremy Avigad, Leonardo de Moura
|
|||
|
import logic funext bool
|
|||
|
using eq_proofs bool
|
|||
|
|
|||
|
namespace set
|
|||
|
definition set (T : Type) := T → bool
|
|||
|
definition mem {T : Type} (x : T) (s : set T) := (s x) = '1
|
|||
|
infix `∈`:50 := mem
|
|||
|
|
|||
|
section
|
|||
|
parameter {T : Type}
|
|||
|
|
|||
|
definition empty : set T := λx, '0
|
|||
|
notation `∅`:max := empty
|
|||
|
|
|||
|
theorem mem_empty (x : T) : ¬ (x ∈ ∅)
|
|||
|
:= assume H : x ∈ ∅, absurd H b0_ne_b1
|
|||
|
|
|||
|
definition univ : set T := λx, '1
|
|||
|
|
|||
|
theorem mem_univ (x : T) : x ∈ univ
|
|||
|
:= refl _
|
|||
|
|
|||
|
definition inter (A B : set T) : set T := λx, A x && B x
|
|||
|
infixl `∩`:70 := inter
|
|||
|
|
|||
|
theorem mem_inter (x : T) (A B : set T) : x ∈ A ∩ B ↔ (x ∈ A ∧ x ∈ B)
|
|||
|
:= iff_intro
|
|||
|
(assume H, and_intro (band_eq_b1_elim_left H) (band_eq_b1_elim_right H))
|
|||
|
(assume H,
|
|||
|
have e1 : A x = '1, from and_elim_left H,
|
|||
|
have e2 : B x = '1, from and_elim_right H,
|
|||
|
calc A x && B x = '1 && B x : {e1}
|
|||
|
... = '1 && '1 : {e2}
|
|||
|
... = '1 : band_b1_left '1)
|
|||
|
|
|||
|
theorem inter_comm (A B : set T) : A ∩ B = B ∩ A
|
|||
|
:= funext (λx, band_comm (A x) (B x))
|
|||
|
|
|||
|
theorem inter_assoc (A B C : set T) : (A ∩ B) ∩ C = A ∩ (B ∩ C)
|
|||
|
:= funext (λx, band_assoc (A x) (B x) (C x))
|
|||
|
|
|||
|
definition union (A B : set T) : set T := λx, A x || B x
|
|||
|
infixl `∪`:65 := union
|
|||
|
|
|||
|
theorem mem_union (x : T) (A B : set T) : x ∈ A ∪ B ↔ (x ∈ A ∨ x ∈ B)
|
|||
|
:= iff_intro
|
|||
|
(assume H, bor_to_or H)
|
|||
|
(assume H, or_elim H
|
|||
|
(assume Ha : A x = '1,
|
|||
|
show A x || B x = '1, from Ha⁻¹ ▸ bor_b1_left (B x))
|
|||
|
(assume Hb : B x = '1,
|
|||
|
show A x || B x = '1, from Hb⁻¹ ▸ bor_b1_right (A x)))
|
|||
|
|
|||
|
theorem union_comm (A B : set T) : A ∪ B = B ∪ A
|
|||
|
:= funext (λx, bor_comm (A x) (B x))
|
|||
|
|
|||
|
theorem union_assoc (A B C : set T) : (A ∪ B) ∪ C = A ∪ (B ∪ C)
|
|||
|
:= funext (λx, bor_assoc (A x) (B x) (C x))
|
|||
|
|
|||
|
end
|
|||
|
end
|