2014-11-21 09:58:12 -08:00
|
|
|
-- Copyright (c) 2014 Microsoft Corporation. All rights reserved.
|
|
|
|
-- Released under Apache 2.0 license as described in the file LICENSE.
|
|
|
|
-- Author: Leonardo de Moura
|
2014-11-30 20:34:12 -08:00
|
|
|
prelude
|
|
|
|
import init.nat
|
2014-11-21 09:58:12 -08:00
|
|
|
|
|
|
|
namespace well_founded
|
|
|
|
-- This is an auxiliary definition that useful for generating a new "proof" for (well_founded R)
|
|
|
|
-- that allows us to use well_founded.fix and execute the definitions up to k nested recursive
|
|
|
|
-- calls without "computing" with the proofs in Hwf.
|
|
|
|
definition intro_k {A : Type} {R : A → A → Prop} (Hwf : well_founded R) (k : nat) : well_founded R :=
|
|
|
|
well_founded.intro
|
|
|
|
(nat.rec_on k
|
|
|
|
(λ n : A, well_founded.apply Hwf n)
|
|
|
|
(λ (k' : nat) (f : Πa, acc R a), (λ n : A, acc.intro n (λ y H, f y))))
|
|
|
|
|
|
|
|
end well_founded
|