lean2/library/data/vector.lean

274 lines
9.1 KiB
Text
Raw Normal View History

/-
Copyright (c) 2014 Floris van Doorn. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Module: data.vector
Author: Floris van Doorn, Leonardo de Moura
-/
import data.nat data.list data.fin
open nat prod fin
inductive vector (A : Type) : nat → Type :=
| nil {} : vector A zero
| cons : Π {n}, A → vector A n → vector A (succ n)
namespace vector
notation a :: b := cons a b
notation `[` l:(foldr `,` (h t, cons h t) nil `]`) := l
variables {A B C : Type}
protected definition is_inhabited [instance] [h : inhabited A] : ∀ (n : nat), inhabited (vector A n)
| 0 := inhabited.mk []
| (n+1) := inhabited.mk (inhabited.value h :: inhabited.value (is_inhabited n))
theorem vector0_eq_nil : ∀ (v : vector A 0), v = []
| [] := rfl
definition head : Π {n : nat}, vector A (succ n) → A
| n (a::v) := a
definition tail : Π {n : nat}, vector A (succ n) → vector A n
| n (a::v) := v
theorem head_cons {n : nat} (h : A) (t : vector A n) : head (h :: t) = h :=
rfl
theorem tail_cons {n : nat} (h : A) (t : vector A n) : tail (h :: t) = t :=
rfl
theorem eta : ∀ {n : nat} (v : vector A (succ n)), head v :: tail v = v
| n (a::v) := rfl
definition last : Π {n : nat}, vector A (succ n) → A
| last [a] := a
| last (a::v) := last v
theorem last_singleton (a : A) : last [a] = a :=
rfl
theorem last_cons {n : nat} (a : A) (v : vector A (succ n)) : last (a :: v) = last v :=
rfl
definition const : Π (n : nat), A → vector A n
| 0 a := []
| (succ n) a := a :: const n a
theorem head_const (n : nat) (a : A) : head (const (succ n) a) = a :=
rfl
theorem last_const : ∀ (n : nat) (a : A), last (const (succ n) a) = a
| 0 a := rfl
| (n+1) a := last_const n a
definition nth : Π {n : nat}, vector A n → fin n → A
| ⌞n+1⌟ (h :: t) (fz n) := h
| ⌞n+1⌟ (h :: t) (fs f) := nth t f
definition tabulate : Π {n : nat}, (fin n → A) → vector A n
| 0 f := []
| (n+1) f := f (fz n) :: tabulate (λ i : fin n, f (fs i))
theorem nth_tabulate : ∀ {n : nat} (f : fin n → A) (i : fin n), nth (tabulate f) i = f i
| (n+1) f (fz n) := rfl
| (n+1) f (fs i) :=
begin
change (nth (tabulate (λ i : fin n, f (fs i))) i = f (fs i)),
rewrite nth_tabulate
end
definition map (f : A → B) : Π {n : nat}, vector A n → vector B n
| map [] := []
| map (a::v) := f a :: map v
theorem map_nil (f : A → B) : map f [] = [] :=
rfl
theorem map_cons {n : nat} (f : A → B) (h : A) (t : vector A n) : map f (h :: t) = f h :: map f t :=
rfl
theorem nth_map (f : A → B) : ∀ {n : nat} (v : vector A n) (i : fin n), nth (map f v) i = f (nth v i)
| (succ n) (h :: t) (fz n) := rfl
| (succ n) (h :: t) (fs i) :=
begin
change (nth (map f t) i = f (nth t i)),
rewrite nth_map
end
definition map2 (f : A → B → C) : Π {n : nat}, vector A n → vector B n → vector C n
| map2 [] [] := []
| map2 (a::va) (b::vb) := f a b :: map2 va vb
theorem map2_nil (f : A → B → C) : map2 f [] [] = [] :=
rfl
theorem map2_cons {n : nat} (f : A → B → C) (h₁ : A) (h₂ : B) (t₁ : vector A n) (t₂ : vector B n) :
map2 f (h₁ :: t₁) (h₂ :: t₂) = f h₁ h₂ :: map2 f t₁ t₂ :=
rfl
definition append : Π {n m : nat}, vector A n → vector A m → vector A (n ⊕ m)
| 0 m [] w := w
| (succ n) m (a::v) w := a :: (append v w)
theorem nil_append {n : nat} (v : vector A n) : append [] v = v :=
rfl
theorem append_cons {n m : nat} (h : A) (t : vector A n) (v : vector A m) :
append (h::t) v = h :: (append t v) :=
rfl
theorem append_nil : Π {n : nat} (v : vector A n), append v [] == v
| 0 [] := !heq.refl
| (n+1) (h::t) :=
begin
change (h :: append t [] == h :: t),
have H₁ : append t [] == t, from append_nil t,
revert H₁, generalize (append t []),
rewrite [-add_eq_addl, add_zero],
intro w H₁,
rewrite [heq.to_eq H₁],
apply heq.refl
end
theorem map_append (f : A → B) : ∀ {n m : nat} (v : vector A n) (w : vector A m), map f (append v w) = append (map f v) (map f w)
| 0 m [] w := rfl
| (n+1) m (h :: t) w :=
begin
change (f h :: map f (append t w) = f h :: append (map f t) (map f w)),
rewrite map_append
end
definition unzip : Π {n : nat}, vector (A × B) n → vector A n × vector B n
| unzip [] := ([], [])
| unzip ((a, b) :: v) := (a :: pr₁ (unzip v), b :: pr₂ (unzip v))
theorem unzip_nil : unzip (@nil (A × B)) = ([], []) :=
rfl
theorem unzip_cons {n : nat} (a : A) (b : B) (v : vector (A × B) n) :
unzip ((a, b) :: v) = (a :: pr₁ (unzip v), b :: pr₂ (unzip v)) :=
rfl
definition zip : Π {n : nat}, vector A n → vector B n → vector (A × B) n
| zip [] [] := []
| zip (a::va) (b::vb) := ((a, b) :: zip va vb)
theorem zip_nil_nil : zip (@nil A) (@nil B) = nil :=
rfl
theorem zip_cons_cons {n : nat} (a : A) (b : B) (va : vector A n) (vb : vector B n) :
zip (a::va) (b::vb) = ((a, b) :: zip va vb) :=
rfl
theorem unzip_zip : ∀ {n : nat} (v₁ : vector A n) (v₂ : vector B n), unzip (zip v₁ v₂) = (v₁, v₂)
| 0 [] [] := rfl
| (n+1) (a::va) (b::vb) := calc
unzip (zip (a :: va) (b :: vb))
= (a :: pr₁ (unzip (zip va vb)), b :: pr₂ (unzip (zip va vb))) : rfl
... = (a :: pr₁ (va, vb), b :: pr₂ (va, vb)) : by rewrite unzip_zip
... = (a :: va, b :: vb) : rfl
theorem zip_unzip : ∀ {n : nat} (v : vector (A × B) n), zip (pr₁ (unzip v)) (pr₂ (unzip v)) = v
| 0 [] := rfl
| (n+1) ((a, b) :: v) := calc
zip (pr₁ (unzip ((a, b) :: v))) (pr₂ (unzip ((a, b) :: v)))
= (a, b) :: zip (pr₁ (unzip v)) (pr₂ (unzip v)) : rfl
... = (a, b) :: v : by rewrite zip_unzip
/- Concat -/
definition concat : Π {n : nat}, vector A n → A → vector A (succ n)
| concat [] a := [a]
| concat (b::v) a := b :: concat v a
theorem concat_nil (a : A) : concat [] a = [a] :=
rfl
theorem concat_cons {n : nat} (b : A) (v : vector A n) (a : A) : concat (b :: v) a = b :: concat v a :=
rfl
theorem last_concat : ∀ {n : nat} (v : vector A n) (a : A), last (concat v a) = a
| 0 [] a := rfl
| (n+1) (b::v) a := calc
last (concat (b::v) a) = last (concat v a) : rfl
... = a : last_concat v a
/- Reverse -/
definition reverse : Π {n : nat}, vector A n → vector A n
| 0 [] := []
| (n+1) (x :: xs) := concat (reverse xs) x
theorem reverse_concat : Π {n : nat} (xs : vector A n) (a : A), reverse (concat xs a) = a :: reverse xs
| 0 [] a := rfl
| (n+1) (x :: xs) a :=
begin
change (concat (reverse (concat xs a)) x = a :: reverse (x :: xs)),
rewrite reverse_concat
end
theorem reverse_reverse : Π {n : nat} (xs : vector A n), reverse (reverse xs) = xs
| 0 [] := rfl
| (n+1) (x :: xs) :=
begin
change (reverse (concat (reverse xs) x) = x :: xs),
rewrite [reverse_concat, reverse_reverse]
end
/- list <-> vector -/
definition of_list {A : Type} : Π (l : list A), vector A (list.length l)
| list.nil := []
| (list.cons a l) := a :: (of_list l)
definition to_list {A : Type} : Π {n : nat}, vector A n → list A
| 0 [] := list.nil
| (n+1) (a :: vs) := list.cons a (to_list vs)
theorem to_list_of_list {A : Type} : ∀ (l : list A), to_list (of_list l) = l
| list.nil := rfl
| (list.cons a l) :=
begin
change (list.cons a (to_list (of_list l)) = list.cons a l),
rewrite to_list_of_list
end
theorem length_to_list {A : Type} : ∀ {n : nat} (v : vector A n), list.length (to_list v) = n
| 0 [] := rfl
| (n+1) (a :: vs) :=
begin
change (succ (list.length (to_list vs)) = succ n),
rewrite length_to_list
end
theorem of_list_to_list {A : Type} : ∀ {n : nat} (v : vector A n), of_list (to_list v) == v
| 0 [] := !heq.refl
| (n+1) (a :: vs) :=
begin
change (a :: of_list (to_list vs) == a :: vs),
have H₁ : of_list (to_list vs) == vs, from of_list_to_list vs,
revert H₁,
generalize (of_list (to_list vs)),
rewrite length_to_list at *,
intro vs', intro H,
have H₂ : vs' = vs, from heq.to_eq H,
rewrite H₂,
apply heq.refl
end
/- decidable equality -/
open decidable
definition decidable_eq [H : decidable_eq A] : ∀ {n : nat} (v₁ v₂ : vector A n), decidable (v₁ = v₂)
| ⌞0⌟ [] [] := inl rfl
| ⌞n+1⌟ (a::v₁) (b::v₂) :=
match H a b with
| inl Hab :=
match decidable_eq v₁ v₂ with
| inl He := inl (eq.rec_on Hab (eq.rec_on He rfl))
| inr Hn := inr (λ H₁, vector.no_confusion H₁ (λ e₁ e₂ e₃, absurd (heq.to_eq e₃) Hn))
end
| inr Hnab := inr (λ H₁, vector.no_confusion H₁ (λ e₁ e₂ e₃, absurd e₂ Hnab))
end
end vector