feat(library/data/vector): add theorems
This commit is contained in:
parent
f6cd604a44
commit
a628836f28
1 changed files with 89 additions and 5 deletions
|
@ -5,7 +5,7 @@ Released under Apache 2.0 license as described in the file LICENSE.
|
|||
Module: data.vector
|
||||
Author: Floris van Doorn, Leonardo de Moura
|
||||
-/
|
||||
import data.nat.basic
|
||||
import data.nat data.list
|
||||
open nat prod
|
||||
|
||||
inductive vector (A : Type) : nat → Type :=
|
||||
|
@ -82,18 +82,38 @@ namespace vector
|
|||
map2 f (h₁ :: t₁) (h₂ :: t₂) = f h₁ h₂ :: map2 f t₁ t₂ :=
|
||||
rfl
|
||||
|
||||
-- Remark: why do we need to provide indices?
|
||||
definition append : Π {n m : nat}, vector A n → vector A m → vector A (n ⊕ m)
|
||||
| 0 m nil w := w
|
||||
| (succ n) m (a::v) w := a :: (append v w)
|
||||
|
||||
theorem append_nil {n : nat} (v : vector A n) : append nil v = v :=
|
||||
theorem nil_append {n : nat} (v : vector A n) : append nil v = v :=
|
||||
rfl
|
||||
|
||||
theorem append_cons {n m : nat} (h : A) (t : vector A n) (v : vector A m) :
|
||||
append (h::t) v = h :: (append t v) :=
|
||||
rfl
|
||||
|
||||
theorem append_nil : Π {n : nat} (v : vector A n), append v nil == v
|
||||
| zero nil := !heq.refl
|
||||
| (succ n) (h::t) :=
|
||||
begin
|
||||
change (h :: append t nil == h :: t),
|
||||
have H₁ : append t nil == t, from append_nil t,
|
||||
revert H₁, generalize (append t nil),
|
||||
rewrite [-add_eq_addl, add_zero],
|
||||
intros (w, H₁),
|
||||
rewrite [heq.to_eq H₁],
|
||||
apply heq.refl
|
||||
end
|
||||
|
||||
theorem map_append (f : A → B) : ∀ {n m : nat} (v : vector A n) (w : vector A m), map f (append v w) = append (map f v) (map f w)
|
||||
| zero m nil w := rfl
|
||||
| (succ n) m (h :: t) w :=
|
||||
begin
|
||||
change (f h :: map f (append t w) = f h :: append (map f t) (map f w)),
|
||||
rewrite map_append
|
||||
end
|
||||
|
||||
definition unzip : Π {n : nat}, vector (A × B) n → vector A n × vector B n
|
||||
| unzip nil := (nil, nil)
|
||||
| unzip ((a, b) :: v) := (a :: pr₁ (unzip v), b :: pr₂ (unzip v))
|
||||
|
@ -121,7 +141,7 @@ namespace vector
|
|||
| (succ n) (a::va) (b::vb) := calc
|
||||
unzip (zip (a :: va) (b :: vb))
|
||||
= (a :: pr₁ (unzip (zip va vb)), b :: pr₂ (unzip (zip va vb))) : rfl
|
||||
... = (a :: pr₁ (va, vb), b :: pr₂ (va, vb)) : {unzip_zip va vb}
|
||||
... = (a :: pr₁ (va, vb), b :: pr₂ (va, vb)) : by rewrite unzip_zip
|
||||
... = (a :: va, b :: vb) : rfl
|
||||
|
||||
theorem zip_unzip : ∀ {n : nat} (v : vector (A × B) n), zip (pr₁ (unzip v)) (pr₂ (unzip v)) = v
|
||||
|
@ -129,7 +149,7 @@ namespace vector
|
|||
| (succ n) ((a, b) :: v) := calc
|
||||
zip (pr₁ (unzip ((a, b) :: v))) (pr₂ (unzip ((a, b) :: v)))
|
||||
= (a, b) :: zip (pr₁ (unzip v)) (pr₂ (unzip v)) : rfl
|
||||
... = (a, b) :: v : {zip_unzip v}
|
||||
... = (a, b) :: v : by rewrite zip_unzip
|
||||
|
||||
/- Concat -/
|
||||
|
||||
|
@ -148,4 +168,68 @@ namespace vector
|
|||
| (succ n) (b::v) a := calc
|
||||
last (concat (b::v) a) = last (concat v a) : rfl
|
||||
... = a : last_concat v a
|
||||
|
||||
/- Reverse -/
|
||||
|
||||
definition reverse : Π {n : nat}, vector A n → vector A n
|
||||
| zero nil := nil
|
||||
| (succ n) (x :: xs) := concat (reverse xs) x
|
||||
|
||||
theorem reverse_concat : Π {n : nat} (xs : vector A n) (a : A), reverse (concat xs a) = a :: reverse xs
|
||||
| zero nil a := rfl
|
||||
| (succ n) (x :: xs) a :=
|
||||
begin
|
||||
change (concat (reverse (concat xs a)) x = a :: reverse (x :: xs)),
|
||||
rewrite reverse_concat
|
||||
end
|
||||
|
||||
theorem reverse_reverse : Π {n : nat} (xs : vector A n), reverse (reverse xs) = xs
|
||||
| zero nil := rfl
|
||||
| (succ n) (x :: xs) :=
|
||||
begin
|
||||
change (reverse (concat (reverse xs) x) = x :: xs),
|
||||
rewrite [reverse_concat, reverse_reverse]
|
||||
end
|
||||
|
||||
/- list <-> vector -/
|
||||
|
||||
definition of_list {A : Type} : Π (l : list A), vector A (list.length l)
|
||||
| list.nil := nil
|
||||
| (list.cons a l) := a :: (of_list l)
|
||||
|
||||
definition to_list {A : Type} : Π {n : nat}, vector A n → list A
|
||||
| zero nil := list.nil
|
||||
| (succ n) (a :: vs) := list.cons a (to_list vs)
|
||||
|
||||
theorem to_list_of_list {A : Type} : ∀ (l : list A), to_list (of_list l) = l
|
||||
| list.nil := rfl
|
||||
| (list.cons a l) :=
|
||||
begin
|
||||
change (list.cons a (to_list (of_list l)) = list.cons a l),
|
||||
rewrite to_list_of_list
|
||||
end
|
||||
|
||||
theorem length_to_list {A : Type} : ∀ {n : nat} (v : vector A n), list.length (to_list v) = n
|
||||
| zero nil := rfl
|
||||
| (succ n) (a :: vs) :=
|
||||
begin
|
||||
change (succ (list.length (to_list vs)) = succ n),
|
||||
rewrite length_to_list
|
||||
end
|
||||
|
||||
theorem of_list_to_list {A : Type} : ∀ {n : nat} (v : vector A n), of_list (to_list v) == v
|
||||
| zero nil := !heq.refl
|
||||
| (succ n) (a :: vs) :=
|
||||
begin
|
||||
change (a :: of_list (to_list vs) == a :: vs),
|
||||
have H₁ : of_list (to_list vs) == vs, from of_list_to_list vs,
|
||||
revert H₁,
|
||||
generalize (of_list (to_list vs)),
|
||||
rewrite length_to_list at *,
|
||||
intro vs', intro H,
|
||||
have H₂ : vs' = vs, from heq.to_eq H,
|
||||
rewrite H₂,
|
||||
apply heq.refl
|
||||
end
|
||||
|
||||
end vector
|
||||
|
|
Loading…
Reference in a new issue