lean2/library/theories/topology/order_topology.lean

82 lines
3.1 KiB
Text
Raw Normal View History

/-
Copyright (c) 2016 Jacob Gross. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Jacob Gross
The order topology.
-/
import data.set theories.topology.basic algebra.interval
open algebra eq.ops set interval topology
namespace order_topology
variables {X : Type} [linear_strong_order_pair X]
definition linorder_generators : set (set X) := {y | ∃ a, y = '(a, ∞) } {y | ∃ a, y = '(-∞, a)}
definition linorder_topology [instance] [reducible] : topology X :=
topology.generated_by linorder_generators
theorem Open_Ioi {a : X} : Open '(a, ∞) :=
(generators_mem_topology_generated_by linorder_generators) (!mem_unionl (exists.intro a rfl))
theorem Open_Iio {a : X} : Open '(-∞, a) :=
(generators_mem_topology_generated_by linorder_generators) (!mem_unionr (exists.intro a rfl))
theorem closed_Ici (a : X) : closed '[a,∞) :=
!compl_Ici⁻¹ ▸ Open_Iio
theorem closed_Iic (a : X) : closed '(-∞,a] :=
have '(a, ∞) = -'(-∞,a], from ext(take x, iff.intro
(assume H, not_le_of_gt H)
(assume H, lt_of_not_ge H)),
this ▸ Open_Ioi
theorem Open_Ioo (a b : X) : Open '(a, b) :=
Open_inter !Open_Ioi !Open_Iio
theorem closed_Icc (a b : X) : closed '[a, b] :=
closed_inter !closed_Ici !closed_Iic
section
open classical
theorem linorder_separation {x y : X} :
x < y → ∃ a b, (x < a ∧ b < y) ∧ '(-∞, a) ∩ '(b, ∞) = ∅ :=
suppose x < y,
if H1 : ∃ z, x < z ∧ z < y then
obtain z (Hz : x < z ∧ z < y), from H1,
have '(-∞, z) ∩ '(z, ∞) = ∅, from ext (take r, iff.intro
(assume H, absurd (!lt.trans (and.elim_left H) (and.elim_right H)) !lt.irrefl)
(assume H, !not.elim !not_mem_empty H)),
exists.intro z (exists.intro z (and.intro Hz this))
else
have '(-∞, y) ∩ '(x, ∞) = ∅, from ext(take r, iff.intro
(assume H, absurd (exists.intro r (iff.elim_left and.comm H)) H1)
(assume H, !not.elim !not_mem_empty H)),
exists.intro y (exists.intro x (and.intro (and.intro `x < y` `x < y`) this))
end
protected definition T2_space.of_linorder_topology [reducible] [trans_instance] :
T2_space X :=
⦃ T2_space, linorder_topology,
T2 := abstract
take x y, assume H,
or.elim (lt_or_gt_of_ne H)
(assume H,
obtain a [b Hab], from linorder_separation H,
show _, from exists.intro '(-∞, a) (exists.intro '(b, ∞)
(and.intro Open_Iio (and.intro Open_Ioi (iff.elim_left and.assoc Hab)))))
(assume H,
obtain a [b Hab], from linorder_separation H,
have Hx : x ∈ '(b, ∞), from and.elim_right (and.elim_left Hab),
have Hy : y ∈ '(-∞, a), from and.elim_left (and.elim_left Hab),
have Hi : '(b, ∞) ∩ '(-∞, a) = ∅, from !inter_comm ▸ (and.elim_right Hab),
have (Open '(b,∞)) ∧ (Open '(-∞, a)) ∧ x ∈ '(b, ∞) ∧ y ∈ '(-∞, a) ∧
'(b, ∞) ∩ '(-∞, a) = ∅, from
and.intro Open_Ioi (and.intro Open_Iio (and.intro Hx (and.intro Hy Hi))),
show _, from exists.intro '(b,∞) (exists.intro '(-∞, a) this))
end ⦄
end order_topology