2013-09-06 17:06:26 +00:00
|
|
|
Set: pp::colors
|
|
|
|
Set: pp::unicode
|
|
|
|
Proved: simple
|
2014-01-05 20:05:08 +00:00
|
|
|
theorem simple (p q r : Bool) : (p ⇒ q) ∧ (q ⇒ r) ⇒ p ⇒ r :=
|
2014-01-06 03:10:21 +00:00
|
|
|
discharge
|
2013-09-06 17:06:26 +00:00
|
|
|
(λ H_pq_qr : (p ⇒ q) ∧ (q ⇒ r),
|
2014-01-06 03:10:21 +00:00
|
|
|
discharge
|
2013-09-06 17:06:26 +00:00
|
|
|
(λ H_p : p,
|
2014-01-06 03:10:21 +00:00
|
|
|
let P_pq : p ⇒ q := and::eliml H_pq_qr,
|
|
|
|
P_qr : q ⇒ r := and::elimr H_pq_qr,
|
|
|
|
P_q : q := P_pq ◂ H_p
|
|
|
|
in P_qr ◂ P_q))
|