2013-12-25 19:51:27 +00:00
|
|
|
Set: pp::colors
|
|
|
|
Set: pp::unicode
|
|
|
|
Proved: T
|
2014-01-05 20:05:08 +00:00
|
|
|
theorem T (A : Type) (p : A → Bool) (f : A → A → A) : ∀ x y z : A,
|
2013-12-25 19:51:27 +00:00
|
|
|
p (f x x) ⇒ x = y ⇒ x = z ⇒ p (f y z) :=
|
2014-01-06 03:10:21 +00:00
|
|
|
forall::intro
|
2013-12-25 19:51:27 +00:00
|
|
|
(λ x : A,
|
2014-01-06 03:10:21 +00:00
|
|
|
forall::intro
|
2013-12-25 19:51:27 +00:00
|
|
|
(λ x::1 : A,
|
2014-01-06 03:10:21 +00:00
|
|
|
forall::intro
|
2013-12-25 19:51:27 +00:00
|
|
|
(λ x::2 : A,
|
2014-01-06 03:10:21 +00:00
|
|
|
discharge
|
2013-12-25 19:51:27 +00:00
|
|
|
(λ H : p (f x x),
|
2014-01-06 03:10:21 +00:00
|
|
|
discharge
|
|
|
|
(λ H::1 : x = x::1, discharge (λ H::2 : x = x::2, subst (subst H H::1) H::2))))))
|