lean2/tests/lean/simp3.lean.expected.out

36 lines
1.2 KiB
Text
Raw Normal View History

Set: pp::colors
Set: pp::unicode
Defined: double
¬ 0 = 1
9
0 = 1
3 ≤ 2 + 2 + (2 + 2) + 1
3 ≤ 2 * 2 + (2 * 2 + (2 * 2 + (2 * 2 + 1)))
Assumed: a
Assumed: b
Assumed: c
Assumed: d
a * c + (a * d + (b * c + b * d))
trans (Nat::distributel a b (c + d))
(trans (congr (congr2 Nat::add (Nat::distributer a c d)) (Nat::distributer b c d))
(Nat::add_assoc (a * c) (a * d) (b * c + b * d)))
Proved: congr2_congr1
Proved: congr2_congr2
Proved: congr1_congr2
trans (congr (congr2 eq
(congr1 (congr2 Nat::add (trans (congr2 (ite (a > 0) b) (Nat::add_zeror b)) (if_a_a (a > 0) b)))
10))
(congr1 (congr2 Nat::add (if_a_a (a > 0) b)) 10))
(eq_id (b + 10))
trans (congr (congr2 (λ x : , eq ((λ x : , x + 10) x))
(trans (congr2 (ite (a > 0) b) (Nat::add_zeror b)) (if_a_a (a > 0) b)))
(congr2 (λ x : , x + 10) (if_a_a (a > 0) b)))
(eq_id (b + 10))
a * a + (a * b + (b * a + b * b))
→ ⊥ refl ( → ⊥) false
refl () false
⊥ → imp_congr (refl ⊥) (λ C::1 : ⊥, eqt_intro C::1) false
↔ ⊥ refl ( ↔ ⊥) false