lean2/library/theories/analysis/normed_space.lean

277 lines
10 KiB
Text
Raw Normal View History

/-
Copyright (c) 2015 Jeremy Avigad. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Author: Jeremy Avigad
Normed spaces.
-/
import algebra.module .metric_space
open real nat classical topology analysis
noncomputable theory
structure has_norm [class] (M : Type) : Type :=
(norm : M → )
namespace analysis
definition norm {M : Type} [has_normM : has_norm M] (v : M) : := has_norm.norm v
notation `∥`v`∥` := norm v
end analysis
/- real vector spaces -/
-- where is the right place to put this?
structure real_vector_space [class] (V : Type) extends vector_space V
section
variables {V : Type} [real_vector_space V]
-- these specializations help the elaborator when it is hard to infer the ring, e.g. with numerals
proposition smul_left_distrib_real (a : ) (u v : V) : a • (u + v) = a • u + a • v :=
smul_left_distrib a u v
proposition smul_right_distrib_real (a b : ) (u : V) : (a + b) • u = a • u + b • u :=
smul_right_distrib a b u
proposition mul_smul_real (a : ) (b : ) (u : V) : (a * b) • u = a • (b • u) :=
mul_smul a b u
proposition one_smul_real (u : V) : (1 : ) • u = u := one_smul u
proposition zero_smul_real (u : V) : (0 : ) • u = 0 := zero_smul u
proposition smul_zero_real (a : ) : a • (0 : V) = 0 := smul_zero a
proposition neg_smul_real (a : ) (u : V) : (-a) • u = - (a • u) := neg_smul a u
proposition neg_one_smul_real (u : V) : -(1 : ) • u = -u := neg_one_smul u
proposition smul_neg_real (a : ) (u : V) : a • (-u) = -(a • u) := smul_neg a u
end
/- real normed vector spaces -/
structure normed_vector_space [class] (V : Type) extends real_vector_space V, has_norm V :=
(norm_zero : norm zero = 0)
(eq_zero_of_norm_eq_zero : ∀ u : V, norm u = 0 → u = zero)
(norm_triangle : ∀ u v, norm (add u v) ≤ norm u + norm v)
(norm_smul : ∀ (a : ) (v : V), norm (smul a v) = abs a * norm v)
namespace analysis
variable {V : Type}
variable [normed_vector_space V]
proposition norm_zero : ∥ (0 : V) ∥ = 0 := !normed_vector_space.norm_zero
proposition eq_zero_of_norm_eq_zero {u : V} (H : ∥ u ∥ = 0) : u = 0 :=
!normed_vector_space.eq_zero_of_norm_eq_zero H
proposition norm_triangle (u v : V) : ∥ u + v ∥ ≤ ∥ u ∥ + ∥ v ∥ :=
!normed_vector_space.norm_triangle
proposition norm_smul (a : ) (v : V) : ∥ a • v ∥ = abs a * ∥ v ∥ :=
!normed_vector_space.norm_smul
proposition norm_neg (v : V) : ∥ -v ∥ = ∥ v ∥ :=
have abs (1 : ) = 1, from abs_of_nonneg zero_le_one,
by rewrite [-@neg_one_smul V, norm_smul, abs_neg, this, one_mul]
proposition norm_sub (u v : V) : ∥u - v∥ = ∥v - u∥ :=
by rewrite [-norm_neg, neg_sub]
end analysis
section
open analysis
variable {V : Type}
variable [normed_vector_space V]
private definition nvs_dist [reducible] (u v : V) := ∥ u - v ∥
private lemma nvs_dist_self (u : V) : nvs_dist u u = 0 :=
by rewrite [↑nvs_dist, sub_self, norm_zero]
private lemma eq_of_nvs_dist_eq_zero (u v : V) (H : nvs_dist u v = 0) : u = v :=
have u - v = 0, from eq_zero_of_norm_eq_zero H,
eq_of_sub_eq_zero this
private lemma nvs_dist_triangle (u v w : V) : nvs_dist u w ≤ nvs_dist u v + nvs_dist v w :=
calc
nvs_dist u w = ∥ (u - v) + (v - w) ∥ : by rewrite [↑nvs_dist, *sub_eq_add_neg, add.assoc,
neg_add_cancel_left]
... ≤ ∥ u - v ∥ + ∥ v - w ∥ : norm_triangle
private lemma nvs_dist_comm (u v : V) : nvs_dist u v = nvs_dist v u :=
by rewrite [↑nvs_dist, -norm_neg, neg_sub]
definition normed_vector_space_to_metric_space [trans_instance]
(V : Type) [nvsV : normed_vector_space V] :
metric_space V :=
⦃ metric_space,
dist := nvs_dist,
dist_self := nvs_dist_self,
eq_of_dist_eq_zero := eq_of_nvs_dist_eq_zero,
dist_comm := nvs_dist_comm,
dist_triangle := nvs_dist_triangle
open nat
proposition converges_to_seq_norm_elim {X : → V} {x : V} (H : X ⟶ x [at ∞]) :
∀ {ε : }, ε > 0 → ∃ N₁ : , ∀ {n : }, n ≥ N₁ → ∥ X n - x ∥ < ε :=
approaches_at_infty_dest H
proposition dist_eq_norm_sub (u v : V) : dist u v = ∥ u - v ∥ := rfl
proposition norm_eq_dist_zero (u : V) : ∥ u ∥ = dist u 0 :=
by rewrite [dist_eq_norm_sub, sub_zero]
proposition norm_nonneg (u : V) : ∥ u ∥ ≥ 0 :=
by rewrite norm_eq_dist_zero; apply !dist_nonneg
end
structure banach_space [class] (V : Type) extends nvsV : normed_vector_space V :=
(complete : ∀ X, @analysis.cauchy V (@normed_vector_space_to_metric_space V nvsV) X →
@analysis.converges_seq V (@normed_vector_space_to_metric_space V nvsV) X)
definition banach_space_to_metric_space [trans_instance] (V : Type) [bsV : banach_space V] :
complete_metric_space V :=
⦃ complete_metric_space, normed_vector_space_to_metric_space V,
complete := banach_space.complete
namespace analysis
variable {V : Type}
variable [normed_vector_space V]
variables {X Y : → V}
variables {x y : V}
proposition add_converges_to_seq (HX : X ⟶ x [at ∞]) (HY : Y ⟶ y [at ∞]) :
(λ n, X n + Y n) ⟶ x + y [at ∞] :=
approaches_at_infty_intro
take ε : , suppose ε > 0,
have e2pos : ε / 2 > 0, from div_pos_of_pos_of_pos `ε > 0` two_pos,
obtain (N₁ : ) (HN₁ : ∀ {n}, n ≥ N₁ → ∥ X n - x ∥ < ε / 2),
from converges_to_seq_norm_elim HX e2pos,
obtain (N₂ : ) (HN₂ : ∀ {n}, n ≥ N₂ → ∥ Y n - y ∥ < ε / 2),
from converges_to_seq_norm_elim HY e2pos,
let N := max N₁ N₂ in
exists.intro N
(take n,
suppose n ≥ N,
have ngtN₁ : n ≥ N₁, from nat.le_trans !le_max_left `n ≥ N`,
have ngtN₂ : n ≥ N₂, from nat.le_trans !le_max_right `n ≥ N`,
show ∥ (X n + Y n) - (x + y) ∥ < ε, from calc
∥ (X n + Y n) - (x + y) ∥
= ∥ (X n - x) + (Y n - y) ∥ : by rewrite [sub_add_eq_sub_sub, *sub_eq_add_neg,
*add.assoc, add.left_comm (-x)]
... ≤ ∥ X n - x ∥ + ∥ Y n - y ∥ : norm_triangle
... < ε / 2 + ε / 2 : add_lt_add (HN₁ ngtN₁) (HN₂ ngtN₂)
... = ε : add_halves)
private lemma smul_converges_to_seq_aux {c : } (cnz : c ≠ 0) (HX : X ⟶ x [at ∞]) :
(λ n, c • X n) ⟶ c • x [at ∞] :=
approaches_at_infty_intro
take ε : , suppose ε > 0,
have abscpos : abs c > 0, from abs_pos_of_ne_zero cnz,
have epos : ε / abs c > 0, from div_pos_of_pos_of_pos `ε > 0` abscpos,
obtain N (HN : ∀ {n}, n ≥ N → norm (X n - x) < ε / abs c), from converges_to_seq_norm_elim HX epos,
exists.intro N
(take n,
suppose n ≥ N,
have H : norm (X n - x) < ε / abs c, from HN this,
show norm (c • X n - c • x) < ε, from calc
norm (c • X n - c • x)
= abs c * norm (X n - x) : by rewrite [-smul_sub_left_distrib, norm_smul]
... < abs c * (ε / abs c) : mul_lt_mul_of_pos_left H abscpos
... = ε : mul_div_cancel' (ne_of_gt abscpos))
proposition smul_converges_to_seq (c : ) (HX : X ⟶ x [at ∞]) :
(λ n, c • X n) ⟶ c • x [at ∞] :=
by_cases
(assume cz : c = 0,
have (λ n, c • X n) = (λ n, 0), from funext (take x, by rewrite [cz, zero_smul]),
begin rewrite [this, cz, zero_smul], apply approaches_constant end)
(suppose c ≠ 0, smul_converges_to_seq_aux this HX)
proposition neg_converges_to_seq (HX : X ⟶ x [at ∞]) :
(λ n, - X n) ⟶ - x [at ∞] :=
approaches_at_infty_intro
take ε, suppose ε > 0,
obtain N (HN : ∀ {n}, n ≥ N → norm (X n - x) < ε), from converges_to_seq_norm_elim HX this,
exists.intro N
(take n,
suppose n ≥ N,
show norm (- X n - (- x)) < ε,
by rewrite [-neg_neg_sub_neg, *neg_neg, norm_neg]; exact HN `n ≥ N`)
proposition neg_converges_to_seq_iff : ((λ n, - X n) ⟶ - x [at ∞]) ↔ (X ⟶ x [at ∞]) :=
have aux : X = λ n, (- (- X n)), from funext (take n, by rewrite neg_neg),
iff.intro
(assume H : (λ n, -X n)⟶ -x [at ∞],
show X ⟶ x [at ∞], by rewrite [aux, -neg_neg x]; exact neg_converges_to_seq H)
neg_converges_to_seq
proposition norm_converges_to_seq_zero (HX : X ⟶ 0 [at ∞]) : (λ n, norm (X n)) ⟶ 0 [at ∞] :=
approaches_at_infty_intro
take ε, suppose ε > 0,
obtain N (HN : ∀ n, n ≥ N → norm (X n - 0) < ε), from approaches_at_infty_dest HX `ε > 0`,
exists.intro N
(take n, assume Hn : n ≥ N,
have norm (X n) < ε, begin rewrite -(sub_zero (X n)), apply HN n Hn end,
show abs (norm (X n) - 0) < ε,
by rewrite [sub_zero, abs_of_nonneg !norm_nonneg]; apply this)
proposition converges_to_seq_zero_of_norm_converges_to_seq_zero
(HX : (λ n, norm (X n)) ⟶ 0 [at ∞]) :
X ⟶ 0 [at ∞] :=
approaches_at_infty_intro
take ε, suppose ε > 0,
obtain N (HN : ∀ n, n ≥ N → abs (norm (X n) - 0) < ε), from approaches_at_infty_dest HX `ε > 0`,
exists.intro (N : )
(take n : , assume Hn : n ≥ N,
have HN' : abs (norm (X n) - 0) < ε, from HN n Hn,
have norm (X n) < ε,
by rewrite [sub_zero at HN', abs_of_nonneg !norm_nonneg at HN']; apply HN',
show norm (X n - 0) < ε,
by rewrite sub_zero; apply this)
proposition norm_converges_to_seq_zero_iff (X : → V) :
((λ n, norm (X n)) ⟶ 0 [at ∞]) ↔ (X ⟶ 0 [at ∞]) :=
iff.intro converges_to_seq_zero_of_norm_converges_to_seq_zero norm_converges_to_seq_zero
end analysis
namespace analysis
variables {U V : Type}
variable [HU : normed_vector_space U]
variable [HV : normed_vector_space V]
variables f g : U → V
include HU HV
theorem add_converges_to_at {lf lg : V} {x : U} (Hf : f ⟶ lf at x) (Hg : g ⟶ lg at x) :
(λ y, f y + g y) ⟶ lf + lg at x :=
begin
apply converges_to_at_of_all_conv_seqs,
intro X HX,
apply add_converges_to_seq,
apply all_conv_seqs_of_converges_to_at Hf,
apply HX,
apply all_conv_seqs_of_converges_to_at Hg,
apply HX
end
open topology
theorem normed_vector_space.continuous_at_intro {x : U}
(H : ∀ ε : , ε > 0 → (∃ δ : , δ > 0 ∧ ∀ x' : U, ∥x' - x∥ < δ → ∥f x' - f x∥ < ε)) :
continuous_at f x :=
continuous_at_intro H
theorem normed_vector_space.continuous_at_elim {x : U} (H : continuous_at f x) :
∀ ε : , ε > 0 → (∃ δ : , δ > 0 ∧ ∀ x' : U, ∥x' - x∥ < δ → ∥f x' - f x∥ < ε) :=
continuous_at_elim H
end analysis