2015-02-01 15:58:58 +00:00
|
|
|
|
/-
|
|
|
|
|
Copyright (c) 2014 Microsoft Corporation. All rights reserved.
|
|
|
|
|
Released under Apache 2.0 license as described in the file LICENSE.
|
|
|
|
|
|
|
|
|
|
Module: logic.axioms.classical
|
|
|
|
|
Author: Leonardo de Moura
|
|
|
|
|
-/
|
|
|
|
|
import logic.connectives logic.quantifiers logic.cast algebra.relation
|
2015-04-01 19:36:33 +00:00
|
|
|
|
import logic.axioms.em
|
2015-02-01 15:58:58 +00:00
|
|
|
|
open eq.ops
|
|
|
|
|
|
2015-04-01 01:51:43 +00:00
|
|
|
|
theorem prop_complete (a : Prop) : a = true ∨ a = false :=
|
|
|
|
|
or.elim (em a)
|
|
|
|
|
(λ t, or.inl (propext (iff.intro (λ h, trivial) (λ h, t))))
|
|
|
|
|
(λ f, or.inr (propext (iff.intro (λ h, absurd h f) (λ h, false.elim h))))
|
2015-02-01 15:58:58 +00:00
|
|
|
|
|
|
|
|
|
definition eq_true_or_eq_false := prop_complete
|
|
|
|
|
|
2015-03-06 02:07:06 +00:00
|
|
|
|
theorem cases_true_false (P : Prop → Prop) (H1 : P true) (H2 : P false) (a : Prop) : P a :=
|
2015-02-01 15:58:58 +00:00
|
|
|
|
or.elim (prop_complete a)
|
|
|
|
|
(assume Ht : a = true, Ht⁻¹ ▸ H1)
|
|
|
|
|
(assume Hf : a = false, Hf⁻¹ ▸ H2)
|
|
|
|
|
|
|
|
|
|
theorem cases_on (a : Prop) {P : Prop → Prop} (H1 : P true) (H2 : P false) : P a :=
|
2015-03-06 02:07:06 +00:00
|
|
|
|
cases_true_false P H1 H2 a
|
2015-02-01 15:58:58 +00:00
|
|
|
|
|
2015-02-01 16:16:30 +00:00
|
|
|
|
-- this supercedes by_cases in decidable
|
|
|
|
|
definition by_cases {p q : Prop} (Hpq : p → q) (Hnpq : ¬p → q) : q :=
|
|
|
|
|
or.elim (em p) (assume Hp, Hpq Hp) (assume Hnp, Hnpq Hnp)
|
|
|
|
|
|
|
|
|
|
-- this supercedes by_contradiction in decidable
|
|
|
|
|
theorem by_contradiction {p : Prop} (H : ¬p → false) : p :=
|
|
|
|
|
by_cases
|
|
|
|
|
(assume H1 : p, H1)
|
|
|
|
|
(assume H1 : ¬p, false.rec _ (H H1))
|
|
|
|
|
|
2015-02-01 15:58:58 +00:00
|
|
|
|
theorem eq_false_or_eq_true (a : Prop) : a = false ∨ a = true :=
|
2015-03-06 02:07:06 +00:00
|
|
|
|
cases_true_false (λ x, x = false ∨ x = true)
|
2015-02-01 15:58:58 +00:00
|
|
|
|
(or.inr rfl)
|
|
|
|
|
(or.inl rfl)
|
|
|
|
|
a
|
|
|
|
|
|
|
|
|
|
theorem eq.of_iff {a b : Prop} (H : a ↔ b) : a = b :=
|
2015-04-01 01:51:43 +00:00
|
|
|
|
iff.elim (assume H1 H2, propext (iff.intro H1 H2)) H
|
2015-02-01 15:58:58 +00:00
|
|
|
|
|
|
|
|
|
theorem iff_eq_eq {a b : Prop} : (a ↔ b) = (a = b) :=
|
2015-04-01 01:51:43 +00:00
|
|
|
|
propext (iff.intro
|
2015-02-01 15:58:58 +00:00
|
|
|
|
(assume H, eq.of_iff H)
|
2015-04-01 01:51:43 +00:00
|
|
|
|
(assume H, iff.of_eq H))
|
2015-02-01 15:58:58 +00:00
|
|
|
|
|
|
|
|
|
open relation
|
|
|
|
|
theorem iff_congruence [instance] (P : Prop → Prop) : is_congruence iff iff P :=
|
|
|
|
|
is_congruence.mk
|
|
|
|
|
(take (a b : Prop),
|
|
|
|
|
assume H : a ↔ b,
|
|
|
|
|
show P a ↔ P b, from iff.of_eq (eq.of_iff H ▸ eq.refl (P a)))
|