lean2/hott/homotopy/homotopy_group.hlean

278 lines
11 KiB
Text
Raw Normal View History

/-
Copyright (c) 2016 Floris van Doorn. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Floris van Doorn, Clive Newstead
-/
import .LES_of_homotopy_groups .sphere .complex_hopf
open eq is_trunc trunc_index pointed algebra trunc nat is_conn fiber pointed unit
namespace is_trunc
-- Lemma 8.3.1
theorem trivial_homotopy_group_of_is_trunc (A : Type*) {n k : } [is_trunc n A] (H : n < k)
: is_contr (π[k] A) :=
begin
apply is_trunc_trunc_of_is_trunc,
apply is_contr_loop_of_is_trunc,
apply @is_trunc_of_le A n _,
apply trunc_index.le_of_succ_le_succ,
rewrite [succ_sub_two_succ k],
exact of_nat_le_of_nat H,
end
theorem trivial_ghomotopy_group_of_is_trunc (A : Type*) (n k : ) [is_trunc n A] (H : n ≤ k)
: is_contr (πg[k+1] A) :=
trivial_homotopy_group_of_is_trunc A (lt_succ_of_le H)
-- Lemma 8.3.2
theorem trivial_homotopy_group_of_is_conn (A : Type*) {k n : } (H : k ≤ n) [is_conn n A]
: is_contr (π[k] A) :=
begin
have H3 : is_contr (ptrunc k A), from is_conn_of_le A (of_nat_le_of_nat H),
have H4 : is_contr (Ω[k](ptrunc k A)), from !is_trunc_loop_of_is_trunc,
apply is_trunc_equiv_closed_rev,
{ apply equiv_of_pequiv (homotopy_group_pequiv_loop_ptrunc k A)}
end
-- Corollary 8.3.3
section
open sphere sphere.ops sphere_index
theorem homotopy_group_sphere_le (n k : ) (H : k < n) : is_contr (π[k] (S* n)) :=
begin
cases n with n,
{ exfalso, apply not_lt_zero, exact H},
{ have H2 : k ≤ n, from le_of_lt_succ H,
apply @(trivial_homotopy_group_of_is_conn _ H2) }
end
end
theorem is_contr_HG_fiber_of_is_connected {A B : Type*} (k n : ) (f : A →* B)
[H : is_conn_fun n f] (H2 : k ≤ n) : is_contr (π[k] (pfiber f)) :=
@(trivial_homotopy_group_of_is_conn (pfiber f) H2) (H pt)
2016-07-13 08:39:16 +00:00
theorem homotopy_group_trunc_of_le (A : Type*) (n k : ) (H : k ≤ n)
: π[k] (ptrunc n A) ≃* π[k] A :=
2016-07-13 08:39:16 +00:00
begin
refine !homotopy_group_pequiv_loop_ptrunc ⬝e* _,
2016-07-13 08:39:16 +00:00
refine loopn_pequiv_loopn _ (ptrunc_ptrunc_pequiv_left _ _) ⬝e* _,
exact of_nat_le_of_nat H,
exact !homotopy_group_pequiv_loop_ptrunc⁻¹ᵉ*,
2016-07-13 08:39:16 +00:00
end
/- Corollaries of the LES of homotopy groups -/
local attribute ab_group.to_group [coercion]
local attribute is_equiv_tinverse [instance]
open prod chain_complex group fin equiv function is_equiv lift
/-
Because of the construction of the LES this proof only gives us this result when
A and B live in the same universe (because Lean doesn't have universe cumulativity).
However, below we also proof that it holds for A and B in arbitrary universes.
-/
theorem is_equiv_π_of_is_connected'.{u} {A B : pType.{u}} {n k : } (f : A →* B)
(H2 : k ≤ n) [H : is_conn_fun n f] : is_equiv (π→[k] f) :=
begin
cases k with k,
{ /- k = 0 -/
change (is_equiv (trunc_functor 0 f)), apply is_equiv_trunc_functor_of_is_conn_fun,
refine is_conn_fun_of_le f (zero_le_of_nat n)},
{ /- k > 0 -/
have H2' : k ≤ n, from le.trans !self_le_succ H2,
exact
@is_equiv_of_trivial _
(LES_of_homotopy_groups f) _
(is_exact_LES_of_homotopy_groups f (k, 2))
(is_exact_LES_of_homotopy_groups f (succ k, 0))
(@is_contr_HG_fiber_of_is_connected A B k n f H H2')
(@is_contr_HG_fiber_of_is_connected A B (succ k) n f H H2)
(@pgroup_of_group _ (group_LES_of_homotopy_groups f k 0) idp)
(@pgroup_of_group _ (group_LES_of_homotopy_groups f k 1) idp)
(homomorphism.struct (homomorphism_LES_of_homotopy_groups_fun f (k, 0)))},
end
theorem is_equiv_π_of_is_connected.{u v} {A : pType.{u}} {B : pType.{v}} {n k : } (f : A →* B)
(H2 : k ≤ n) [H : is_conn_fun n f] : is_equiv (π→[k] f) :=
begin
have π→[k] pdown.{v u} ∘* π→[k] (plift_functor f) ∘* π→[k] pup.{u v} ~* π→[k] f,
begin
refine pwhisker_left _ !homotopy_group_functor_compose⁻¹* ⬝* _,
refine !homotopy_group_functor_compose⁻¹* ⬝* _,
apply homotopy_group_functor_phomotopy, apply plift_functor_phomotopy
end,
have π→[k] pdown.{v u} ∘ π→[k] (plift_functor f) ∘ π→[k] pup.{u v} ~ π→[k] f, from this,
apply is_equiv.homotopy_closed, rotate 1,
{ exact this},
{ do 2 apply is_equiv_compose,
{ apply is_equiv_homotopy_group_functor, apply to_is_equiv !equiv_lift},
{ refine @(is_equiv_π_of_is_connected' _ H2) _, apply is_conn_fun_lift_functor},
{ apply is_equiv_homotopy_group_functor, apply to_is_equiv !equiv_lift⁻¹ᵉ}}
end
definition π_equiv_π_of_is_connected {A B : Type*} {n k : } (f : A →* B)
(H2 : k ≤ n) [H : is_conn_fun n f] : π[k] A ≃* π[k] B :=
pequiv_of_pmap (π→[k] f) (is_equiv_π_of_is_connected f H2)
-- TODO: prove this for A and B in different universe levels
theorem is_surjective_π_of_is_connected.{u} {A B : pType.{u}} (n : ) (f : A →* B)
[H : is_conn_fun n f] : is_surjective (π→[n + 1] f) :=
@is_surjective_of_trivial _
(LES_of_homotopy_groups f) _
(is_exact_LES_of_homotopy_groups f (n, 2))
(@is_contr_HG_fiber_of_is_connected A B n n f H !le.refl)
/-
Theorem 8.8.3: Whitehead's principle and its corollaries
-/
definition whitehead_principle (n : ℕ₋₂) {A B : Type}
[HA : is_trunc n A] [HB : is_trunc n B] (f : A → B) (H' : is_equiv (trunc_functor 0 f))
(H : Πa k, is_equiv (π→[k + 1] (pmap_of_map f a))) : is_equiv f :=
begin
revert A B HA HB f H' H, induction n with n IH: intros,
{ apply is_equiv_of_is_contr},
have Πa, is_equiv (Ω→ (pmap_of_map f a)),
begin
intro a,
apply IH, do 2 (esimp; exact _),
{ rexact H a 0},
intro p k,
have is_equiv (π→[k + 1] (Ω→(pmap_of_map f a))),
from is_equiv_homotopy_group_functor_ap1 (k+1) (pmap_of_map f a),
have Π(b : A) (p : a = b),
is_equiv (pmap.to_fun (π→[k + 1] (pmap_of_map (ap f) p))),
begin
intro b p, induction p, apply is_equiv.homotopy_closed, exact this,
refine homotopy_group_functor_phomotopy _ _,
apply ap1_pmap_of_map
end,
have is_equiv (homotopy_group_pequiv _
(pequiv_of_eq_pt (!idp_con⁻¹ : ap f p = Ω→ (pmap_of_map f a) p)) ∘
pmap.to_fun (π→[k + 1] (pmap_of_map (ap f) p))),
begin
apply is_equiv_compose, exact this a p,
end,
apply is_equiv.homotopy_closed, exact this,
refine !homotopy_group_functor_compose⁻¹* ⬝* _,
apply homotopy_group_functor_phomotopy,
fapply phomotopy.mk,
{ esimp, intro q, refine !idp_con⁻¹},
{ esimp, refine !idp_con⁻¹},
end,
apply is_equiv_of_is_equiv_ap1_of_is_equiv_trunc
end
definition whitehead_principle_pointed (n : ℕ₋₂) {A B : Type*}
[HA : is_trunc n A] [HB : is_trunc n B] [is_conn 0 A] (f : A →* B)
(H : Πk, is_equiv (π→[k] f)) : is_equiv f :=
begin
apply whitehead_principle n, rexact H 0,
intro a k, revert a, apply is_conn.elim -1,
have is_equiv (π→[k + 1] (pointed_eta_pequiv B ⬝e* (pequiv_of_eq_pt (respect_pt f))⁻¹ᵉ*)
∘* π→[k + 1] f ∘* π→[k + 1] (pointed_eta_pequiv A)⁻¹ᵉ*),
begin
apply is_equiv_compose
(π→[k + 1] (pointed_eta_pequiv B ⬝e* (pequiv_of_eq_pt (respect_pt f))⁻¹ᵉ*)),
apply is_equiv_compose (π→[k + 1] f),
all_goals apply is_equiv_homotopy_group_functor,
end,
refine @(is_equiv.homotopy_closed _) _ this _,
apply to_homotopy,
refine pwhisker_left _ !homotopy_group_functor_compose⁻¹* ⬝* _,
refine !homotopy_group_functor_compose⁻¹* ⬝* _,
apply homotopy_group_functor_phomotopy, apply phomotopy_pmap_of_map
end
open pointed.ops
definition is_contr_of_trivial_homotopy (n : ℕ₋₂) (A : Type) [is_trunc n A] [is_conn 0 A]
(H : Πk a, is_contr (π[k] (pointed.MK A a))) : is_contr A :=
begin
fapply is_trunc_is_equiv_closed_rev, { exact λa, ⋆},
apply whitehead_principle n,
{ apply is_equiv_trunc_functor_of_is_conn_fun, apply is_conn_fun_to_unit_of_is_conn},
intro a k,
apply @is_equiv_of_is_contr,
refine trivial_homotopy_group_of_is_trunc _ !zero_lt_succ,
end
definition is_contr_of_trivial_homotopy_nat (n : ) (A : Type) [is_trunc n A] [is_conn 0 A]
(H : Πk a, k ≤ n → is_contr (π[k] (pointed.MK A a))) : is_contr A :=
begin
apply is_contr_of_trivial_homotopy n,
intro k a, apply @lt_ge_by_cases _ _ n k,
{ intro H', exact trivial_homotopy_group_of_is_trunc _ H'},
{ intro H', exact H k a H'}
end
definition is_contr_of_trivial_homotopy_pointed (n : ℕ₋₂) (A : Type*) [is_trunc n A]
(H : Πk, is_contr (π[k] A)) : is_contr A :=
begin
have is_conn 0 A, proof H 0 qed,
fapply is_contr_of_trivial_homotopy n A,
intro k, apply is_conn.elim -1,
cases A with A a, exact H k
end
definition is_contr_of_trivial_homotopy_nat_pointed (n : ) (A : Type*) [is_trunc n A]
(H : Πk, k ≤ n → is_contr (π[k] A)) : is_contr A :=
begin
have is_conn 0 A, proof H 0 !zero_le qed,
fapply is_contr_of_trivial_homotopy_nat n A,
intro k a H', revert a, apply is_conn.elim -1,
cases A with A a, exact H k H'
end
definition is_conn_fun_of_equiv_on_homotopy_groups.{u} (n : ) {A B : Type.{u}} (f : A → B)
[is_equiv (trunc_functor 0 f)]
(H1 : Πa k, k ≤ n → is_equiv (homotopy_group_functor k (pmap_of_map f a)))
(H2 : Πa, is_surjective (homotopy_group_functor (succ n) (pmap_of_map f a))) : is_conn_fun n f :=
have H2' : Πa k, k ≤ n → is_surjective (homotopy_group_functor (succ k) (pmap_of_map f a)),
begin
intro a k H, cases H with n' H',
{ apply H2},
{ apply is_surjective_of_is_equiv, apply H1, exact succ_le_succ H'}
end,
have H3 : Πa, is_contr (ptrunc n (pfiber (pmap_of_map f a))),
begin
intro a, apply is_contr_of_trivial_homotopy_nat_pointed n,
{ intro k H, apply is_trunc_equiv_closed_rev, exact homotopy_group_ptrunc_of_le H _,
rexact @is_contr_of_is_embedding_of_is_surjective +3
(LES_of_homotopy_groups (pmap_of_map f a)) (k, 0)
(is_exact_LES_of_homotopy_groups _ _)
proof @(is_embedding_of_is_equiv _) (H1 a k H) qed
proof (H2' a k H) qed}
end,
show Πb, is_contr (trunc n (fiber f b)),
begin
intro b,
note p := right_inv (trunc_functor 0 f) (tr b), revert p,
induction (trunc_functor 0 f)⁻¹ (tr b), esimp, intro p,
induction !tr_eq_tr_equiv p with q,
rewrite -q, exact H3 a
end
end is_trunc
open is_trunc function
/- applications to infty-connected types and maps -/
namespace is_conn
definition is_conn_fun_inf_of_equiv_on_homotopy_groups.{u} {A B : Type.{u}} (f : A → B)
[is_equiv (trunc_functor 0 f)]
(H1 : Πa k, is_equiv (homotopy_group_functor k (pmap_of_map f a))) : is_conn_fun_inf f :=
begin
apply is_conn_fun_inf.mk_nat, intro n, apply is_conn_fun_of_equiv_on_homotopy_groups,
{ intro a k H, exact H1 a k},
{ intro a, apply is_surjective_of_is_equiv}
end
definition is_equiv_trunc_functor_of_is_conn_fun_inf.{u} (n : ℕ₋₂) {A B : Type.{u}} (f : A → B)
[is_conn_fun_inf f] : is_equiv (trunc_functor n f) :=
_
definition is_equiv_homotopy_group_functor_of_is_conn_fun_inf.{u} {A B : pType.{u}} (f : A →* B)
[is_conn_fun_inf f] (a : A) (k : ) : is_equiv (homotopy_group_functor k f) :=
is_equiv_π_of_is_connected f (le.refl k)
end is_conn