2014-12-22 20:33:29 +00:00
|
|
|
/-
|
|
|
|
Copyright (c) 2014 Microsoft Corporation. All rights reserved.
|
|
|
|
Released under Apache 2.0 license as described in the file LICENSE.
|
|
|
|
|
2014-12-23 20:35:06 +00:00
|
|
|
Module: data.num
|
2014-12-22 20:33:29 +00:00
|
|
|
Author: Leonardo de Moura
|
|
|
|
-/
|
|
|
|
|
2014-12-01 04:34:12 +00:00
|
|
|
import logic.eq
|
2014-11-07 16:21:42 +00:00
|
|
|
open bool
|
|
|
|
|
|
|
|
namespace pos_num
|
|
|
|
theorem succ_not_is_one (a : pos_num) : is_one (succ a) = ff :=
|
2015-02-11 20:49:27 +00:00
|
|
|
pos_num.induction_on a rfl (take n iH, rfl) (take n iH, rfl)
|
2014-11-07 16:21:42 +00:00
|
|
|
|
|
|
|
theorem pred.succ (a : pos_num) : pred (succ a) = a :=
|
2015-02-11 20:49:27 +00:00
|
|
|
pos_num.rec_on a
|
2014-11-07 16:21:42 +00:00
|
|
|
rfl
|
|
|
|
(take (n : pos_num) (iH : pred (succ n) = n),
|
|
|
|
calc
|
|
|
|
pred (succ (bit1 n)) = cond (is_one (succ n)) one (bit1 (pred (succ n))) : rfl
|
|
|
|
... = cond ff one (bit1 (pred (succ n))) : succ_not_is_one
|
|
|
|
... = bit1 (pred (succ n)) : rfl
|
|
|
|
... = bit1 n : iH)
|
|
|
|
(take (n : pos_num) (iH : pred (succ n) = n), rfl)
|
|
|
|
|
|
|
|
section
|
|
|
|
variables (a b : pos_num)
|
|
|
|
|
|
|
|
theorem add.one_one : one + one = bit0 one :=
|
|
|
|
rfl
|
|
|
|
|
|
|
|
theorem add.one_bit0 : one + (bit0 a) = bit1 a :=
|
|
|
|
rfl
|
|
|
|
|
|
|
|
theorem add.one_bit1 : one + (bit1 a) = succ (bit1 a) :=
|
|
|
|
rfl
|
|
|
|
|
|
|
|
theorem add.bit0_one : (bit0 a) + one = bit1 a :=
|
|
|
|
rfl
|
|
|
|
|
|
|
|
theorem add.bit1_one : (bit1 a) + one = succ (bit1 a) :=
|
|
|
|
rfl
|
|
|
|
|
|
|
|
theorem add.bit0_bit0 : (bit0 a) + (bit0 b) = bit0 (a + b) :=
|
|
|
|
rfl
|
|
|
|
|
|
|
|
theorem add.bit0_bit1 : (bit0 a) + (bit1 b) = bit1 (a + b) :=
|
|
|
|
rfl
|
|
|
|
|
|
|
|
theorem add.bit1_bit0 : (bit1 a) + (bit0 b) = bit1 (a + b) :=
|
|
|
|
rfl
|
|
|
|
|
|
|
|
theorem add.bit1_bit1 : (bit1 a) + (bit1 b) = succ (bit1 (a + b)) :=
|
|
|
|
rfl
|
|
|
|
end
|
|
|
|
|
|
|
|
theorem mul.one_left (a : pos_num) : one * a = a :=
|
|
|
|
rfl
|
|
|
|
|
|
|
|
theorem mul.one_right (a : pos_num) : a * one = a :=
|
2015-02-11 20:49:27 +00:00
|
|
|
pos_num.induction_on a
|
2014-11-07 16:21:42 +00:00
|
|
|
rfl
|
|
|
|
(take (n : pos_num) (iH : n * one = n),
|
|
|
|
calc bit1 n * one = bit0 (n * one) + one : rfl
|
|
|
|
... = bit0 n + one : iH
|
|
|
|
... = bit1 n : add.bit0_one)
|
|
|
|
(take (n : pos_num) (iH : n * one = n),
|
|
|
|
calc bit0 n * one = bit0 (n * one) : rfl
|
|
|
|
... = bit0 n : iH)
|
|
|
|
|
|
|
|
end pos_num
|