lean2/src/library/inductive_unifier_plugin.cpp

140 lines
6.4 KiB
C++
Raw Normal View History

/*
Copyright (c) 2014 Microsoft Corporation. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Author: Leonardo de Moura
*/
#include "util/lazy_list_fn.h"
#include "kernel/inductive/inductive.h"
#include "library/unifier_plugin.h"
#include "library/unifier.h"
#include "library/util.h"
namespace lean {
class inductive_unifier_plugin_cell : public unifier_plugin_cell {
/** \brief Return true iff the lhs or rhs of the constraint c is of the form (elim ... (?m ...) ...) */
bool is_elim_meta_cnstr(type_checker & tc, constraint const & c) const {
return is_eq_cnstr(c) && (inductive::is_elim_meta_app(tc, cnstr_lhs_expr(c)) ||
inductive::is_elim_meta_app(tc, cnstr_rhs_expr(c)));
}
/** \brief Return true iff \c e is of the form (?m ... (intro ...) ...) */
bool is_meta_intro_app(type_checker & tc, expr const & e) const {
if (!is_app(e) || !is_meta(e))
return false;
buffer<expr> args;
get_app_args(e, args);
for (expr const & a : args) {
expr arg = get_app_fn(a);
if (!is_constant(arg))
continue;
if (inductive::is_intro_rule(tc.env(), const_name(arg)))
return true;
}
return false;
}
/** \brief Return true iff the lhs or rhs of the constraint c is of the form (?m ... (intro ...)) */
bool is_meta_intro_cnstr(type_checker & tc, constraint const & c) const {
return is_eq_cnstr(c) && (is_meta_intro_app(tc, cnstr_lhs_expr(c)) || is_meta_intro_app(tc, cnstr_rhs_expr(c)));
}
/**
\brief Given (elim args) =?= t, where elim is the eliminator/recursor for the inductive declaration \c decl,
and the major premise is of the form (?m ...), we create a case split where we try to assign (?m ...)
to the different constructors of decl.
*/
lazy_list<constraints> add_elim_meta_cnstrs(type_checker & tc, name_generator & ngen, inductive::inductive_decl const & decl,
expr const & elim, buffer<expr> & args, expr const & t, justification const & j,
constraint_seq cs) const {
lean_assert(is_constant(elim));
environment const & env = tc.env();
levels elim_lvls = const_levels(elim);
unsigned elim_num_lvls = length(elim_lvls);
unsigned major_idx = *inductive::get_elim_major_idx(env, const_name(elim));
expr meta = args[major_idx]; // save this argument, we will update it
lean_assert(has_expr_metavar_strict(meta));
buffer<expr> margs;
expr const & m = get_app_args(meta, margs);
expr mtype = tc.infer(m, cs);
buffer<constraints> alts;
for (auto const & intro : inductive::inductive_decl_intros(decl)) {
constraint_seq cs_intro = cs;
name const & intro_name = inductive::intro_rule_name(intro);
declaration intro_decl = env.get(intro_name);
levels intro_lvls;
if (intro_decl.get_num_univ_params() == elim_num_lvls) {
intro_lvls = elim_lvls;
} else {
lean_assert(intro_decl.get_num_univ_params() == elim_num_lvls - 1);
intro_lvls = tail(elim_lvls);
}
expr intro_fn = mk_constant(inductive::intro_rule_name(intro), intro_lvls);
expr hint = intro_fn;
expr intro_type = tc.whnf(inductive::intro_rule_type(intro), cs_intro);
while (is_pi(intro_type)) {
hint = mk_app(hint, mk_app(mk_aux_metavar_for(ngen, mtype), margs));
intro_type = tc.whnf(binding_body(intro_type), cs_intro);
}
constraint c1 = mk_eq_cnstr(meta, hint, j);
args[major_idx] = hint;
expr reduce_elim = tc.whnf(mk_app(elim, args), cs_intro);
constraint c2 = mk_eq_cnstr(reduce_elim, t, j);
cs_intro = constraint_seq(c1) + constraint_seq(c2) + cs_intro;
buffer<constraint> cs_buffer;
cs_intro.linearize(cs_buffer);
alts.push_back(to_list(cs_buffer.begin(), cs_buffer.end()));
}
return to_lazy(to_list(alts.begin(), alts.end()));
}
lazy_list<constraints> process_elim_meta_core(type_checker & tc, name_generator & ngen,
expr const & lhs, expr const & rhs, justification const & j) const {
lean_assert(inductive::is_elim_meta_app(tc, lhs));
auto dcs = tc.is_def_eq_types(lhs, rhs, j);
if (!dcs.first)
return lazy_list<constraints>();
constraint_seq cs = dcs.second;
buffer<expr> args;
expr const & elim = get_app_args(lhs, args);
environment const & env = tc.env();
auto it_name = *inductive::is_elim_rule(env, const_name(elim));
if (is_recursive_datatype(env, it_name))
return lazy_list<constraints>();
auto decls = *inductive::is_inductive_decl(env, it_name);
for (auto const & d : std::get<2>(decls)) {
if (inductive::inductive_decl_name(d) == it_name)
return add_elim_meta_cnstrs(tc, ngen, d, elim, args, rhs, j, cs);
}
lean_unreachable(); // LCOV_EXCL_LINE
}
public:
/**
\brief Try to solve constraint of the form (elim ... (?m ...)) =?= t, by assigning (?m ...) to the introduction rules
associated with the eliminator \c elim.
*/
virtual lazy_list<constraints> solve(type_checker & tc, constraint const & c, name_generator && ngen) const {
if (!is_eq_cnstr(c))
return lazy_list<constraints>();
expr const & lhs = cnstr_lhs_expr(c);
expr const & rhs = cnstr_rhs_expr(c);
justification const & j = c.get_justification();
if (inductive::is_elim_meta_app(tc, lhs))
return process_elim_meta_core(tc, ngen, lhs, rhs, j);
else if (inductive::is_elim_meta_app(tc, rhs))
return process_elim_meta_core(tc, ngen, rhs, lhs, j);
else
return lazy_list<constraints>();
}
virtual bool delay_constraint(type_checker & tc, constraint const & c) const {
return is_elim_meta_cnstr(tc, c) || is_meta_intro_cnstr(tc, c);
}
};
unifier_plugin mk_inductive_unifier_plugin() {
return std::make_shared<inductive_unifier_plugin_cell>();
}
}