lean2/hott/homotopy/susp.hlean

520 lines
17 KiB
Text
Raw Normal View History

/-
Copyright (c) 2015 Floris van Doorn. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Floris van Doorn, Ulrik Buchholtz
Declaration of suspension
-/
import hit.pushout types.pointed2 cubical.square .connectedness
open pushout unit eq equiv pointed is_equiv
definition susp' (A : Type) : Type := pushout (λ(a : A), star) (λ(a : A), star)
namespace susp
definition north' {A : Type} : susp' A :=
inl star
definition pointed_susp [instance] [constructor] (X : Type)
: pointed (susp' X) :=
pointed.mk north'
end susp open susp
definition susp [constructor] (X : Type) : Type* :=
pointed.MK (susp' X) north'
notation `⅀` := susp
namespace susp
variable {A : Type}
definition north {A : Type} : susp A :=
north'
definition south {A : Type} : susp A :=
inr star
definition merid (a : A) : @north A = @south A :=
glue a
protected definition rec {P : susp A → Type} (PN : P north) (PS : P south)
(Pm : Π(a : A), PN =[merid a] PS) (x : susp' A) : P x :=
begin
induction x with u u,
{ cases u, exact PN},
{ cases u, exact PS},
{ apply Pm},
end
protected definition rec_on [reducible] {P : susp A → Type} (y : susp' A)
(PN : P north) (PS : P south) (Pm : Π(a : A), PN =[merid a] PS) : P y :=
susp.rec PN PS Pm y
theorem rec_merid {P : susp A → Type} (PN : P north) (PS : P south)
(Pm : Π(a : A), PN =[merid a] PS) (a : A)
2016-03-19 15:25:08 +00:00
: apd (susp.rec PN PS Pm) (merid a) = Pm a :=
!rec_glue
protected definition elim {P : Type} (PN : P) (PS : P) (Pm : A → PN = PS)
(x : susp' A) : P :=
susp.rec PN PS (λa, pathover_of_eq _ (Pm a)) x
protected definition elim_on [reducible] {P : Type} (x : susp' A)
(PN : P) (PS : P) (Pm : A → PN = PS) : P :=
susp.elim PN PS Pm x
theorem elim_merid {P : Type} {PN PS : P} (Pm : A → PN = PS) (a : A)
: ap (susp.elim PN PS Pm) (merid a) = Pm a :=
begin
apply inj_inv !(pathover_constant (merid a)),
2016-03-19 15:25:08 +00:00
rewrite [▸*,-apd_eq_pathover_of_eq_ap,↑susp.elim,rec_merid],
end
protected definition elim_type (PN : Type) (PS : Type) (Pm : A → PN ≃ PS)
(x : susp' A) : Type :=
pushout.elim_type (λx, PN) (λx, PS) Pm x
protected definition elim_type_on [reducible] (x : susp' A)
(PN : Type) (PS : Type) (Pm : A → PN ≃ PS) : Type :=
susp.elim_type PN PS Pm x
theorem elim_type_merid (PN : Type) (PS : Type) (Pm : A → PN ≃ PS)
(a : A) : transport (susp.elim_type PN PS Pm) (merid a) = Pm a :=
!elim_type_glue
theorem elim_type_merid_inv {A : Type} (PN : Type) (PS : Type) (Pm : A → PN ≃ PS)
(a : A) : transport (susp.elim_type PN PS Pm) (merid a)⁻¹ = to_inv (Pm a) :=
!elim_type_glue_inv
2016-03-06 18:59:48 +00:00
protected definition merid_square {a a' : A} (p : a = a')
: square (merid a) (merid a') idp idp :=
by cases p; apply vrefl
end susp
attribute susp.north' susp.north susp.south [constructor]
attribute susp.rec susp.elim [unfold 6] [recursor 6]
attribute susp.elim_type [unfold 5]
attribute susp.rec_on susp.elim_on [unfold 3]
attribute susp.elim_type_on [unfold 2]
namespace susp
open is_trunc is_conn trunc
-- Theorem 8.2.1
definition is_conn_susp [instance] (n : trunc_index) (A : Type)
[H : is_conn n A] : is_conn (n .+1) (susp A) :=
is_contr.mk (tr north)
begin
intro x, induction x with x, induction x,
{ reflexivity },
{ exact (trunc.rec (λa, ap tr (merid a)) (center (trunc n A))) },
{ generalize (center (trunc n A)),
intro x, induction x with a',
apply pathover_of_tr_eq,
rewrite [eq_transport_Fr,idp_con],
revert H, induction n with n IH: intro H,
{ apply is_prop.elim },
{ change ap (@tr n .+2 (susp A)) (merid a) = ap tr (merid a'),
generalize a',
apply is_conn_fun.elim n
(is_conn_fun_from_unit n A a)
(λx : A, trunctype.mk' n (ap (@tr n .+2 (susp A)) (merid a) = ap tr (merid x))),
intros,
change ap (@tr n .+2 (susp A)) (merid a) = ap tr (merid a),
reflexivity }
}
end
/- Flattening lemma -/
2016-03-19 15:25:08 +00:00
open prod prod.ops
section
universe variable u
parameters (A : Type) (PN PS : Type.{u}) (Pm : A → PN ≃ PS)
include Pm
local abbreviation P [unfold 5] := susp.elim_type PN PS Pm
local abbreviation F : A × PN → PN := λz, z.2
local abbreviation G : A × PN → PS := λz, Pm z.1 z.2
protected definition flattening : sigma P ≃ pushout F G :=
begin
apply equiv.trans !pushout.flattening,
2016-03-06 18:59:48 +00:00
fapply pushout.equiv,
{ exact sigma.equiv_prod A PN },
{ apply sigma.sigma_unit_left },
{ apply sigma.sigma_unit_left },
{ reflexivity },
{ reflexivity }
end
end
end susp
2016-03-06 18:59:48 +00:00
/- Functoriality and equivalence -/
namespace susp
variables {A B : Type} (f : A → B)
include f
definition susp_functor' [unfold 4] : susp A → susp B :=
2016-03-06 18:59:48 +00:00
begin
intro x, induction x with a,
{ exact north },
{ exact south },
{ exact merid (f a) }
end
variable [Hf : is_equiv f]
include Hf
open is_equiv
protected definition is_equiv_functor [instance] [constructor] : is_equiv (susp_functor' f) :=
adjointify (susp_functor' f) (susp_functor' f⁻¹)
2016-03-06 18:59:48 +00:00
abstract begin
intro sb, induction sb with b, do 2 reflexivity,
apply eq_pathover,
rewrite [ap_id,-ap_compose' (susp_functor' f) (susp_functor' f⁻¹)],
2016-03-06 18:59:48 +00:00
krewrite [susp.elim_merid,susp.elim_merid], apply transpose,
apply susp.merid_square (right_inv f b)
end end
abstract begin
intro sa, induction sa with a, do 2 reflexivity,
apply eq_pathover,
rewrite [ap_id,-ap_compose' (susp_functor' f⁻¹) (susp_functor' f)],
2016-03-06 18:59:48 +00:00
krewrite [susp.elim_merid,susp.elim_merid], apply transpose,
apply susp.merid_square (left_inv f a)
end end
end susp
namespace susp
variables {A B : Type} (f : A ≃ B)
protected definition equiv : susp A ≃ susp B :=
equiv.mk (susp_functor' f) _
2016-03-06 18:59:48 +00:00
end susp
namespace susp
open pointed is_trunc
variables {X X' Y Y' Z : Type*}
definition susp_functor [constructor] (f : X →* Y) : susp X →* susp Y :=
begin
fconstructor,
{ exact susp_functor' f },
{ reflexivity }
end
definition is_equiv_susp_functor [constructor] (f : X →* Y) [Hf : is_equiv f]
: is_equiv (susp_functor f) :=
susp.is_equiv_functor f
definition susp_pequiv [constructor] (f : X ≃* Y) : susp X ≃* susp Y :=
pequiv_of_equiv (susp.equiv f) idp
definition susp_functor_pcompose (g : Y →* Z) (f : X →* Y) :
susp_functor (g ∘* f) ~* susp_functor g ∘* susp_functor f :=
begin
fapply phomotopy.mk,
{ intro x, induction x,
{ reflexivity },
{ reflexivity },
{ apply eq_pathover, apply hdeg_square,
refine !elim_merid ⬝ _ ⬝ (ap_compose (susp_functor g) _ _)⁻¹ᵖ,
refine _ ⬝ ap02 _ !elim_merid⁻¹, exact !elim_merid⁻¹ }},
{ reflexivity },
end
definition susp_functor_phomotopy {f g : X →* Y} (p : f ~* g) :
susp_functor f ~* susp_functor g :=
begin
fapply phomotopy.mk,
{ intro x, induction x,
{ reflexivity },
{ reflexivity },
{ apply eq_pathover, apply hdeg_square, esimp, refine !elim_merid ⬝ _ ⬝ !elim_merid⁻¹ᵖ,
exact ap merid (p a), }},
{ reflexivity },
end
definition susp_functor_pid (A : Type*) : susp_functor (pid A) ~* pid (susp A) :=
begin
fapply phomotopy.mk,
{ intro x, induction x,
{ reflexivity },
{ reflexivity },
{ apply eq_pathover_id_right, apply hdeg_square, apply elim_merid }},
{ reflexivity },
end
/- adjunction originally ported from Coq-HoTT,
but we proved some additional naturality conditions -/
definition loop_susp_unit [constructor] (X : Type*) : X →* Ω(susp X) :=
begin
fconstructor,
{ intro x, exact merid x ⬝ (merid pt)⁻¹ },
{ apply con.right_inv },
end
definition loop_susp_unit_natural (f : X →* Y)
: loop_susp_unit Y ∘* f ~* Ω→ (susp_functor f) ∘* loop_susp_unit X :=
begin
induction X with X x, induction Y with Y y, induction f with f pf, esimp at *, induction pf,
fapply phomotopy.mk,
{ intro x', symmetry,
exact
!ap1_gen_idp_left ⬝
(!ap_con ⬝
whisker_left _ !ap_inv) ⬝
(!elim_merid ◾ (inverse2 !elim_merid)) },
{ rewrite [▸*, idp_con (con.right_inv _)],
apply inv_con_eq_of_eq_con,
refine _ ⬝ !con.assoc',
rewrite inverse2_right_inv,
refine _ ⬝ !con.assoc',
rewrite [ap_con_right_inv],
rewrite [ap1_gen_idp_left_con],
rewrite [-ap_compose (concat idp)] },
end
definition loop_susp_counit [constructor] (X : Type*) : susp (Ω X) →* X :=
begin
2017-07-21 12:35:23 +00:00
fapply pmap.mk,
{ intro x, induction x, exact pt, exact pt, exact a },
{ reflexivity },
end
definition loop_susp_counit_natural (f : X →* Y)
: f ∘* loop_susp_counit X ~* loop_susp_counit Y ∘* (susp_functor (ap1 f)) :=
begin
induction X with X x, induction Y with Y y, induction f with f pf, esimp at *, induction pf,
fconstructor,
{ intro x', induction x' with p,
{ reflexivity },
{ reflexivity },
{ esimp, apply eq_pathover, apply hdeg_square,
xrewrite [-ap_compose' f, -ap_compose' (susp.elim (f x) (f x) (λ (a : f x = f x), a)),▸*],
xrewrite [+elim_merid, ap1_gen_idp_left] }},
{ reflexivity }
end
definition loop_susp_counit_unit (X : Type*)
: ap1 (loop_susp_counit X) ∘* loop_susp_unit (Ω X) ~* pid (Ω X) :=
begin
induction X with X x, fconstructor,
{ intro p, esimp,
refine !ap1_gen_idp_left ⬝
(!ap_con ⬝
whisker_left _ !ap_inv) ⬝
(!elim_merid ◾ inverse2 !elim_merid) },
{ rewrite [▸*,inverse2_right_inv (elim_merid id idp)],
refine !con.assoc ⬝ _,
xrewrite [ap_con_right_inv (susp.elim x x (λa, a)) (merid idp),ap1_gen_idp_left_con,
-ap_compose] }
end
definition loop_susp_unit_counit (X : Type*)
: loop_susp_counit (susp X) ∘* susp_functor (loop_susp_unit X) ~* pid (susp X) :=
begin
induction X with X x, fconstructor,
{ intro x', induction x',
{ reflexivity },
{ exact merid pt },
{ apply eq_pathover,
xrewrite [▸*, ap_id, -ap_compose' (susp.elim north north (λa, a)), +elim_merid,▸*],
apply square_of_eq, exact !idp_con ⬝ !inv_con_cancel_right⁻¹ }},
{ reflexivity }
end
definition susp_elim [constructor] {X Y : Type*} (f : X →* Ω Y) : susp X →* Y :=
loop_susp_counit Y ∘* susp_functor f
definition loop_susp_intro [constructor] {X Y : Type*} (f : susp X →* Y) : X →* Ω Y :=
ap1 f ∘* loop_susp_unit X
definition susp_elim_susp_functor {A B C : Type*} (g : B →* Ω C) (f : A →* B) :
susp_elim g ∘* susp_functor f ~* susp_elim (g ∘* f) :=
begin
refine !passoc ⬝* _, exact pwhisker_left _ !susp_functor_pcompose⁻¹*
end
definition susp_elim_phomotopy {A B : Type*} {f g : A →* Ω B} (p : f ~* g) : susp_elim f ~* susp_elim g :=
pwhisker_left _ (susp_functor_phomotopy p)
definition susp_elim_natural {X Y Z : Type*} (g : Y →* Z) (f : X →* Ω Y)
: g ∘* susp_elim f ~* susp_elim (Ω→ g ∘* f) :=
begin
refine _ ⬝* pwhisker_left _ !susp_functor_pcompose⁻¹*,
refine !passoc⁻¹* ⬝* _ ⬝* !passoc,
exact pwhisker_right _ !loop_susp_counit_natural
end
definition loop_susp_intro_natural {X Y Z : Type*} (g : susp Y →* Z) (f : X →* Y) :
loop_susp_intro (g ∘* susp_functor f) ~* loop_susp_intro g ∘* f :=
pwhisker_right _ !ap1_pcompose ⬝* !passoc ⬝* pwhisker_left _ !loop_susp_unit_natural⁻¹* ⬝*
!passoc⁻¹*
definition susp_adjoint_loop_right_inv {X Y : Type*} (g : X →* Ω Y) :
loop_susp_intro (susp_elim g) ~* g :=
begin
refine !pwhisker_right !ap1_pcompose ⬝* _,
refine !passoc ⬝* _,
refine !pwhisker_left !loop_susp_unit_natural⁻¹* ⬝* _,
refine !passoc⁻¹* ⬝* _,
refine !pwhisker_right !loop_susp_counit_unit ⬝* _,
apply pid_pcompose
end
definition susp_adjoint_loop_left_inv {X Y : Type*} (f : susp X →* Y) :
susp_elim (loop_susp_intro f) ~* f :=
begin
refine !pwhisker_left !susp_functor_pcompose ⬝* _,
refine !passoc⁻¹* ⬝* _,
refine !pwhisker_right !loop_susp_counit_natural⁻¹* ⬝* _,
refine !passoc ⬝* _,
refine !pwhisker_left !loop_susp_unit_counit ⬝* _,
apply pcompose_pid
end
definition susp_adjoint_loop_unpointed [constructor] (X Y : Type*) : susp X →* Y ≃ X →* Ω Y :=
begin
fapply equiv.MK,
{ exact loop_susp_intro },
{ exact susp_elim },
{ intro g, apply eq_of_phomotopy, exact susp_adjoint_loop_right_inv g },
{ intro f, apply eq_of_phomotopy, exact susp_adjoint_loop_left_inv f }
end
definition susp_functor_pconst_homotopy [unfold 3] {X Y : Type*} (x : susp X) :
susp_functor (pconst X Y) x = pt :=
begin
induction x,
{ reflexivity },
{ exact (merid pt)⁻¹ },
{ apply eq_pathover, refine !elim_merid ⬝ph _ ⬝hp !ap_constant⁻¹, exact square_of_eq !con.right_inv⁻¹ }
end
definition susp_functor_pconst [constructor] (X Y : Type*) : susp_functor (pconst X Y) ~* pconst (susp X) (susp Y) :=
begin
fapply phomotopy.mk,
{ exact susp_functor_pconst_homotopy },
{ reflexivity }
end
definition susp_pfunctor [constructor] (X Y : Type*) : ppmap X Y →* ppmap (susp X) (susp Y) :=
pmap.mk susp_functor (eq_of_phomotopy !susp_functor_pconst)
definition susp_pelim [constructor] (X Y : Type*) : ppmap X (Ω Y) →* ppmap (susp X) Y :=
ppcompose_left (loop_susp_counit Y) ∘* susp_pfunctor X (Ω Y)
definition loop_susp_pintro [constructor] (X Y : Type*) : ppmap (susp X) Y →* ppmap X (Ω Y) :=
ppcompose_right (loop_susp_unit X) ∘* pap1 (susp X) Y
definition loop_susp_pintro_natural_left (f : X' →* X) :
psquare (loop_susp_pintro X Y) (loop_susp_pintro X' Y)
(ppcompose_right (susp_functor f)) (ppcompose_right f) :=
!pap1_natural_left ⬝h* ppcompose_right_psquare (loop_susp_unit_natural f)⁻¹*
definition loop_susp_pintro_natural_right (f : Y →* Y') :
psquare (loop_susp_pintro X Y) (loop_susp_pintro X Y')
(ppcompose_left f) (ppcompose_left (Ω→ f)) :=
!pap1_natural_right ⬝h* !ppcompose_left_ppcompose_right⁻¹*
definition is_equiv_loop_susp_pintro [constructor] (X Y : Type*) :
is_equiv (loop_susp_pintro X Y) :=
begin
fapply adjointify,
{ exact susp_pelim X Y },
{ intro g, apply eq_of_phomotopy, exact susp_adjoint_loop_right_inv g },
{ intro f, apply eq_of_phomotopy, exact susp_adjoint_loop_left_inv f }
end
definition susp_adjoint_loop [constructor] (X Y : Type*) : ppmap (susp X) Y ≃* ppmap X (Ω Y) :=
pequiv_of_pmap (loop_susp_pintro X Y) (is_equiv_loop_susp_pintro X Y)
definition susp_adjoint_loop_natural_right (f : Y →* Y') :
psquare (susp_adjoint_loop X Y) (susp_adjoint_loop X Y')
(ppcompose_left f) (ppcompose_left (Ω→ f)) :=
loop_susp_pintro_natural_right f
definition susp_adjoint_loop_natural_left (f : X' →* X) :
psquare (susp_adjoint_loop X Y) (susp_adjoint_loop X' Y)
(ppcompose_right (susp_functor f)) (ppcompose_right f) :=
loop_susp_pintro_natural_left f
definition ap1_susp_elim {A : Type*} {X : Type*} (p : A →* Ω X) :
Ω→(susp_elim p) ∘* loop_susp_unit A ~* p :=
susp_adjoint_loop_right_inv p
/- the underlying homotopies of susp_adjoint_loop_natural_* -/
definition susp_adjoint_loop_nat_right (f : susp X →* Y) (g : Y →* Z)
: susp_adjoint_loop X Z (g ∘* f) ~* ap1 g ∘* susp_adjoint_loop X Y f :=
begin
esimp [susp_adjoint_loop],
refine _ ⬝* !passoc,
apply pwhisker_right,
apply ap1_pcompose
end
definition susp_adjoint_loop_nat_left (f : Y →* Ω Z) (g : X →* Y)
: (susp_adjoint_loop X Z)⁻¹ᵉ (f ∘* g) ~* (susp_adjoint_loop Y Z)⁻¹ᵉ f ∘* susp_functor g :=
begin
esimp [susp_adjoint_loop],
refine _ ⬝* !passoc⁻¹*,
apply pwhisker_left,
apply susp_functor_pcompose
end
/- iterated suspension -/
definition iterate_susp (n : ) (A : Type*) : Type* := iterate (λX, susp X) n A
open is_conn trunc_index nat
definition iterate_susp_succ (n : ) (A : Type*) :
iterate_susp (succ n) A = susp (iterate_susp n A) :=
idp
definition is_conn_iterate_susp [instance] (n : ℕ₋₂) (m : ) (A : Type*)
[H : is_conn n A] : is_conn (n + m) (iterate_susp m A) :=
begin induction m with m IH, exact H, exact @is_conn_susp _ _ IH end
-- Separate cases for n = 0, which comes up often
definition is_conn_iterate_susp_zero [instance] (m : ) (A : Type*)
[H : is_conn 0 A] : is_conn m (iterate_susp m A) :=
begin induction m with m IH, exact H, exact @is_conn_susp _ _ IH end
definition iterate_susp_functor (n : ) {A B : Type*} (f : A →* B) :
iterate_susp n A →* iterate_susp n B :=
begin
induction n with n g,
{ exact f },
{ exact susp_functor g }
end
definition iterate_susp_succ_in (n : ) (A : Type*) :
iterate_susp (succ n) A ≃* iterate_susp n (susp A) :=
begin
induction n with n IH,
{ reflexivity},
{ exact susp_pequiv IH}
end
definition iterate_susp_adjoint_loopn [constructor] (X Y : Type*) (n : ) :
ppmap (iterate_susp n X) Y ≃* ppmap X (Ω[n] Y) :=
begin
revert X Y, induction n with n IH: intro X Y,
{ reflexivity },
{ refine !susp_adjoint_loop ⬝e* !IH ⬝e* _, apply ppmap_pequiv_ppmap_right,
symmetry, apply loopn_succ_in }
end
end susp