lean2/library/init/logic.lean

631 lines
21 KiB
Text
Raw Normal View History

2014-12-01 04:34:12 +00:00
/-
Copyright (c) 2014 Microsoft Corporation. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Leonardo de Moura, Jeremy Avigad, Floris van Doorn
-/
prelude
import init.datatypes init.reserved_notation
/- implication -/
2014-12-01 04:34:12 +00:00
definition implies (a b : Prop) := a → b
lemma implies.trans [trans] {p q r : Prop} (h₁ : implies p q) (h₂ : implies q r) : implies p r :=
assume hp, h₂ (h₁ hp)
2014-12-01 04:34:12 +00:00
definition trivial := true.intro
definition not (a : Prop) := a → false
prefix `¬` := not
theorem absurd {a : Prop} {b : Type} (H1 : a) (H2 : ¬a) : b :=
2014-12-01 04:34:12 +00:00
false.rec b (H2 H1)
/- not -/
2014-12-01 04:34:12 +00:00
theorem not_false : ¬false :=
2014-12-01 04:34:12 +00:00
assume H : false, H
definition non_contradictory (a : Prop) : Prop := ¬¬a
theorem non_contradictory_intro {a : Prop} (Ha : a) : ¬¬a :=
assume Hna : ¬a, absurd Ha Hna
/- eq -/
2014-12-01 04:34:12 +00:00
notation a = b := eq a b
theorem rfl {A : Type} {a : A} : a = a := eq.refl a
2014-12-01 04:34:12 +00:00
-- proof irrelevance is built in
theorem proof_irrel {a : Prop} (H₁ H₂ : a) : H₁ = H₂ :=
rfl
namespace eq
variables {A : Type}
variables {a b c a': A}
theorem subst {P : A → Prop} (H₁ : a = b) (H₂ : P a) : P b :=
eq.rec H₂ H₁
2014-12-01 04:34:12 +00:00
theorem trans (H₁ : a = b) (H₂ : b = c) : a = c :=
subst H₂ H₁
theorem symm (H : a = b) : b = a :=
eq.rec (refl a) H
2014-12-01 04:34:12 +00:00
namespace ops
notation H `⁻¹` := symm H --input with \sy or \-1 or \inv
notation H1 ⬝ H2 := trans H1 H2
notation H1 ▸ H2 := subst H1 H2
end ops
protected theorem drec_on {B : Πa' : A, a = a' → Type} (H₁ : a = a') (H₂ : B a (refl a)) : B a' H₁ :=
eq.rec (λH₁ : a = a, show B a H₁, from H₂) H₁ H₁
end eq
theorem congr {A B : Type} {f₁ f₂ : A → B} {a₁ a₂ : A} (H₁ : f₁ = f₂) (H₂ : a₁ = a₂) : f₁ a₁ = f₂ a₂ :=
eq.subst H₁ (eq.subst H₂ rfl)
section
variables {A : Type} {a b c: A}
open eq.ops
theorem trans_rel_left (R : A → A → Prop) (H₁ : R a b) (H₂ : b = c) : R a c :=
H₂ ▸ H₁
theorem trans_rel_right (R : A → A → Prop) (H₁ : a = b) (H₂ : R b c) : R a c :=
H₁⁻¹ ▸ H₂
end
section
2014-12-01 04:34:12 +00:00
variable {p : Prop}
open eq.ops
2014-12-01 04:34:12 +00:00
theorem of_eq_true (H : p = true) : p :=
2014-12-01 04:34:12 +00:00
H⁻¹ ▸ trivial
theorem not_of_eq_false (H : p = false) : ¬p :=
2014-12-01 04:34:12 +00:00
assume Hp, H ▸ Hp
end
2014-12-01 04:34:12 +00:00
attribute eq.subst [subst]
attribute eq.refl [refl]
attribute eq.trans [trans]
attribute eq.symm [symm]
2014-12-01 04:34:12 +00:00
/- ne -/
2014-12-01 04:34:12 +00:00
definition ne {A : Type} (a b : A) := ¬(a = b)
notation a ≠ b := ne a b
namespace ne
open eq.ops
variable {A : Type}
variables {a b : A}
theorem intro : (a = b → false) → a ≠ b :=
assume H, H
theorem elim : a ≠ b → a = b → false :=
assume H₁ H₂, H₁ H₂
theorem irrefl : a ≠ a → false :=
assume H, H rfl
theorem symm : a ≠ b → b ≠ a :=
assume (H : a ≠ b) (H₁ : b = a), H (H₁⁻¹)
end ne
section
variables {A : Type} {a : A}
2014-12-01 04:34:12 +00:00
theorem false.of_ne : a ≠ a → false :=
assume H, H rfl
end
infixl `==`:50 := heq
namespace heq
universe variable u
variables {A B C : Type.{u}} {a a' : A} {b b' : B} {c : C}
theorem to_eq (H : a == a') : a = a' :=
2014-12-01 04:34:12 +00:00
have H₁ : ∀ (Ht : A = A), eq.rec_on Ht a = a, from
λ Ht, eq.refl (eq.rec_on Ht a),
heq.rec_on H H₁ (eq.refl A)
theorem elim {A : Type} {a : A} {P : A → Type} {b : A} (H₁ : a == b) (H₂ : P a) : P b :=
2014-12-01 04:34:12 +00:00
eq.rec_on (to_eq H₁) H₂
theorem subst {P : ∀T : Type, T → Prop} (H₁ : a == b) (H₂ : P A a) : P B b :=
heq.rec_on H₁ H₂
2014-12-01 04:34:12 +00:00
theorem symm (H : a == b) : b == a :=
heq.rec_on H (refl a)
2014-12-01 04:34:12 +00:00
theorem of_eq (H : a = a') : a == a' :=
2014-12-01 04:34:12 +00:00
eq.subst H (refl a)
theorem trans (H₁ : a == b) (H₂ : b == c) : a == c :=
subst H₂ H₁
theorem of_heq_of_eq (H₁ : a == b) (H₂ : b = b') : a == b' :=
trans H₁ (of_eq H₂)
2014-12-01 04:34:12 +00:00
theorem of_eq_of_heq (H₁ : a = a') (H₂ : a' == b) : a == b :=
trans (of_eq H₁) H₂
2014-12-01 04:34:12 +00:00
end heq
theorem eq_rec_heq {A : Type} {P : A → Type} {a a' : A} (H : a = a') (p : P a) : eq.rec_on H p == p :=
eq.drec_on H !heq.refl
theorem of_heq_true {a : Prop} (H : a == true) : a :=
of_eq_true (heq.to_eq H)
attribute heq.refl [refl]
attribute heq.trans [trans]
attribute heq.of_heq_of_eq [trans]
attribute heq.of_eq_of_heq [trans]
attribute heq.symm [symm]
2014-12-01 04:34:12 +00:00
/- and -/
2014-12-01 04:34:12 +00:00
notation a /\ b := and a b
notation a ∧ b := and a b
variables {a b c d : Prop}
theorem and.elim (H₁ : a ∧ b) (H₂ : a → b → c) : c :=
and.rec H₂ H₁
2014-12-01 04:34:12 +00:00
/- or -/
2014-12-01 04:34:12 +00:00
notation a `\/` b := or a b
notation a b := or a b
namespace or
theorem elim (H₁ : a b) (H₂ : a → c) (H₃ : b → c) : c :=
or.rec H₂ H₃ H₁
2014-12-01 04:34:12 +00:00
end or
theorem non_contradictory_em (a : Prop) : ¬¬(a ¬a) :=
assume not_em : ¬(a ¬a),
have neg_a : ¬a, from
assume pos_a : a, absurd (or.inl pos_a) not_em,
absurd (or.inr neg_a) not_em
/- iff -/
2014-12-01 04:34:12 +00:00
definition iff (a b : Prop) := (a → b) ∧ (b → a)
notation a <-> b := iff a b
notation a ↔ b := iff a b
namespace iff
theorem intro (H₁ : a → b) (H₂ : b → a) : a ↔ b :=
2014-12-01 04:34:12 +00:00
and.intro H₁ H₂
theorem elim (H₁ : (a → b) → (b → a) → c) (H₂ : a ↔ b) : c :=
2014-12-01 04:34:12 +00:00
and.rec H₁ H₂
theorem elim_left (H : a ↔ b) : a → b :=
2014-12-01 04:34:12 +00:00
elim (assume H₁ H₂, H₁) H
definition mp := @elim_left
theorem elim_right (H : a ↔ b) : b → a :=
2014-12-01 04:34:12 +00:00
elim (assume H₁ H₂, H₂) H
definition mp' := @elim_right
theorem refl (a : Prop) : a ↔ a :=
2014-12-01 04:34:12 +00:00
intro (assume H, H) (assume H, H)
theorem rfl {a : Prop} : a ↔ a :=
2014-12-01 04:34:12 +00:00
refl a
theorem trans (H₁ : a ↔ b) (H₂ : b ↔ c) : a ↔ c :=
intro
(assume Ha, elim_left H₂ (elim_left H₁ Ha))
(assume Hc, elim_right H₁ (elim_right H₂ Hc))
theorem symm (H : a ↔ b) : b ↔ a :=
intro
(assume Hb, elim_right H Hb)
(assume Ha, elim_left H Ha)
open eq.ops
theorem of_eq {a b : Prop} (H : a = b) : a ↔ b :=
iff.intro (λ Ha, H ▸ Ha) (λ Hb, H⁻¹ ▸ Hb)
end iff
theorem not_iff_not_of_iff (H₁ : a ↔ b) : ¬a ↔ ¬b :=
iff.intro
(assume (Hna : ¬ a) (Hb : b), absurd (iff.elim_right H₁ Hb) Hna)
(assume (Hnb : ¬ b) (Ha : a), absurd (iff.elim_left H₁ Ha) Hnb)
theorem of_iff_true (H : a ↔ true) : a :=
iff.mp (iff.symm H) trivial
theorem not_of_iff_false (H : a ↔ false) : ¬a :=
assume Ha : a, iff.mp H Ha
theorem iff_true_intro (H : a) : a ↔ true :=
iff.intro
(λ Hl, trivial)
(λ Hr, H)
theorem iff_false_intro (H : ¬a) : a ↔ false :=
iff.intro
(λ Hl, absurd Hl H)
(λ Hr, false.rec _ Hr)
theorem not_non_contradictory_iff_absurd (a : Prop) : ¬¬¬a ↔ ¬a :=
iff.intro
(assume Hl : ¬¬¬a,
assume Ha : a, absurd (non_contradictory_intro Ha) Hl)
(assume Hr : ¬a,
assume Hnna : ¬¬a, absurd Hr Hnna)
attribute iff.refl [refl]
attribute iff.symm [symm]
attribute iff.trans [trans]
2014-12-01 04:34:12 +00:00
inductive Exists {A : Type} (P : A → Prop) : Prop :=
intro : ∀ (a : A), P a → Exists P
definition exists.intro := @Exists.intro
2014-12-01 04:34:12 +00:00
notation `exists` binders `,` r:(scoped P, Exists P) := r
notation `∃` binders `,` r:(scoped P, Exists P) := r
theorem exists.elim {A : Type} {p : A → Prop} {B : Prop} (H1 : ∃x, p x) (H2 : ∀ (a : A) (H : p a), B) : B :=
2014-12-01 04:34:12 +00:00
Exists.rec H2 H1
/- decidable -/
2014-12-01 04:34:12 +00:00
inductive decidable [class] (p : Prop) : Type :=
| inl : p → decidable p
| inr : ¬p → decidable p
2014-12-01 04:34:12 +00:00
definition decidable_true [instance] : decidable true :=
2014-12-01 04:34:12 +00:00
decidable.inl trivial
definition decidable_false [instance] : decidable false :=
2014-12-01 04:34:12 +00:00
decidable.inr not_false
namespace decidable
variables {p q : Prop}
definition rec_on_true [H : decidable p] {H1 : p → Type} {H2 : ¬p → Type} (H3 : p) (H4 : H1 H3)
: decidable.rec_on H H1 H2 :=
decidable.rec_on H (λh, H4) (λh, !false.rec (h H3))
2014-12-01 04:34:12 +00:00
definition rec_on_false [H : decidable p] {H1 : p → Type} {H2 : ¬p → Type} (H3 : ¬p) (H4 : H2 H3)
: decidable.rec_on H H1 H2 :=
decidable.rec_on H (λh, false.rec _ (H3 h)) (λh, H4)
2014-12-01 04:34:12 +00:00
definition by_cases {q : Type} [C : decidable p] (Hpq : p → q) (Hnpq : ¬p → q) : q :=
decidable.rec_on C (assume Hp, Hpq Hp) (assume Hnp, Hnpq Hnp)
2014-12-01 04:34:12 +00:00
theorem em (p : Prop) [H : decidable p] : p ¬p :=
by_cases (λ Hp, or.inl Hp) (λ Hnp, or.inr Hnp)
theorem by_contradiction [Hp : decidable p] (H : ¬p → false) : p :=
by_cases
(assume H1 : p, H1)
(assume H1 : ¬p, false.rec _ (H H1))
end decidable
section
variables {p q : Prop}
open decidable
definition decidable_of_decidable_of_iff (Hp : decidable p) (H : p ↔ q) : decidable q :=
decidable.rec_on Hp
2014-12-01 04:34:12 +00:00
(assume Hp : p, inl (iff.elim_left H Hp))
(assume Hnp : ¬p, inr (iff.elim_left (not_iff_not_of_iff H) Hnp))
2014-12-01 04:34:12 +00:00
definition decidable_of_decidable_of_eq (Hp : decidable p) (H : p = q) : decidable q :=
decidable_of_decidable_of_iff Hp (iff.of_eq H)
end
2014-12-01 04:34:12 +00:00
section
variables {p q : Prop}
open decidable (rec_on inl inr)
definition decidable_and [instance] [Hp : decidable p] [Hq : decidable q] : decidable (p ∧ q) :=
2014-12-01 04:34:12 +00:00
rec_on Hp
(assume Hp : p, rec_on Hq
(assume Hq : q, inl (and.intro Hp Hq))
(assume Hnq : ¬q, inr (assume H : p ∧ q, and.rec_on H (assume Hp Hq, absurd Hq Hnq))))
(assume Hnp : ¬p, inr (assume H : p ∧ q, and.rec_on H (assume Hp Hq, absurd Hp Hnp)))
2014-12-01 04:34:12 +00:00
definition decidable_or [instance] [Hp : decidable p] [Hq : decidable q] : decidable (p q) :=
2014-12-01 04:34:12 +00:00
rec_on Hp
(assume Hp : p, inl (or.inl Hp))
(assume Hnp : ¬p, rec_on Hq
(assume Hq : q, inl (or.inr Hq))
(assume Hnq : ¬q, inr (assume H : p q, or.elim H (assume Hp, absurd Hp Hnp) (assume Hq, absurd Hq Hnq))))
2014-12-01 04:34:12 +00:00
definition decidable_not [instance] [Hp : decidable p] : decidable (¬p) :=
2014-12-01 04:34:12 +00:00
rec_on Hp
(assume Hp, inr (λ Hnp, absurd Hp Hnp))
2014-12-01 04:34:12 +00:00
(assume Hnp, inl Hnp)
definition decidable_implies [instance] [Hp : decidable p] [Hq : decidable q] : decidable (p → q) :=
2014-12-01 04:34:12 +00:00
rec_on Hp
(assume Hp : p, rec_on Hq
(assume Hq : q, inl (assume H, Hq))
(assume Hnq : ¬q, inr (assume H : p → q, absurd (H Hp) Hnq)))
(assume Hnp : ¬p, inl (assume Hp, absurd Hp Hnp))
definition decidable_iff [instance] [Hp : decidable p] [Hq : decidable q] : decidable (p ↔ q) :=
show decidable ((p → q) ∧ (q → p)), from _
2014-12-01 04:34:12 +00:00
end
definition decidable_pred [reducible] {A : Type} (R : A → Prop) := Π (a : A), decidable (R a)
definition decidable_rel [reducible] {A : Type} (R : A → A → Prop) := Π (a b : A), decidable (R a b)
definition decidable_eq [reducible] (A : Type) := decidable_rel (@eq A)
definition decidable_ne [instance] {A : Type} [H : decidable_eq A] : Π (a b : A), decidable (a ≠ b) :=
show Π x y : A, decidable (x = y → false), from _
2014-12-01 04:34:12 +00:00
namespace bool
theorem ff_ne_tt : ff = tt → false
| [none]
end bool
open bool
definition is_dec_eq {A : Type} (p : A → A → bool) : Prop := ∀ ⦃x y : A⦄, p x y = tt → x = y
definition is_dec_refl {A : Type} (p : A → A → bool) : Prop := ∀x, p x x = tt
open decidable
protected definition bool.has_decidable_eq [instance] : ∀a b : bool, decidable (a = b)
| ff ff := inl rfl
| ff tt := inr ff_ne_tt
| tt ff := inr (ne.symm ff_ne_tt)
| tt tt := inl rfl
definition decidable_eq_of_bool_pred {A : Type} {p : A → A → bool} (H₁ : is_dec_eq p) (H₂ : is_dec_refl p) : decidable_eq A :=
take x y : A, by_cases
(assume Hp : p x y = tt, inl (H₁ Hp))
(assume Hn : ¬ p x y = tt, inr (assume Hxy : x = y, absurd (H₂ y) (eq.rec_on Hxy Hn)))
theorem decidable_eq_inl_refl {A : Type} [H : decidable_eq A] (a : A) : H a a = inl (eq.refl a) :=
match H a a with
| inl e := rfl
| inr n := absurd rfl n
end
open eq.ops
theorem decidable_eq_inr_neg {A : Type} [H : decidable_eq A] {a b : A} : Π n : a ≠ b, H a b = inr n :=
assume n,
match H a b with
| inl e := absurd e n
| inr n₁ := proof_irrel n n₁ ▸ rfl
end
/- inhabited -/
2014-12-01 04:34:12 +00:00
inductive inhabited [class] (A : Type) : Type :=
mk : A → inhabited A
protected definition inhabited.value {A : Type} (h : inhabited A) : A :=
inhabited.rec (λa, a) h
protected definition inhabited.destruct {A : Type} {B : Type} (H1 : inhabited A) (H2 : A → B) : B :=
2014-12-01 04:34:12 +00:00
inhabited.rec H2 H1
definition default (A : Type) [H : inhabited A] : A :=
inhabited.rec (λa, a) H
definition arbitrary [irreducible] (A : Type) [H : inhabited A] : A :=
inhabited.rec (λa, a) H
definition Prop.is_inhabited [instance] : inhabited Prop :=
inhabited.mk true
2014-12-01 04:34:12 +00:00
definition inhabited_fun [instance] (A : Type) {B : Type} [H : inhabited B] : inhabited (A → B) :=
inhabited.rec_on H (λb, inhabited.mk (λa, b))
2014-12-01 04:34:12 +00:00
definition inhabited_Pi [instance] (A : Type) {B : A → Type} [H : Πx, inhabited (B x)] :
2014-12-01 04:34:12 +00:00
inhabited (Πx, B x) :=
inhabited.mk (λa, inhabited.rec_on (H a) (λb, b))
2014-12-01 04:34:12 +00:00
protected definition bool.is_inhabited [instance] : inhabited bool :=
inhabited.mk ff
2014-12-01 04:34:12 +00:00
inductive nonempty [class] (A : Type) : Prop :=
intro : A → nonempty A
protected definition nonempty.elim {A : Type} {B : Prop} (H1 : nonempty A) (H2 : A → B) : B :=
nonempty.rec H2 H1
2014-12-01 04:34:12 +00:00
theorem nonempty_of_inhabited [instance] {A : Type} [H : inhabited A] : nonempty A :=
nonempty.intro (default A)
2014-12-01 04:34:12 +00:00
/- subsingleton -/
inductive subsingleton [class] (A : Type) : Prop :=
intro : (∀ a b : A, a = b) → subsingleton A
protected definition subsingleton.elim {A : Type} [H : subsingleton A] : ∀(a b : A), a = b :=
subsingleton.rec (fun p, p) H
definition subsingleton_prop [instance] (p : Prop) : subsingleton p :=
subsingleton.intro (λa b, !proof_irrel)
definition subsingleton_decidable [instance] (p : Prop) : subsingleton (decidable p) :=
subsingleton.intro (λ d₁,
match d₁ with
| inl t₁ := (λ d₂,
match d₂ with
| inl t₂ := eq.rec_on (proof_irrel t₁ t₂) rfl
| inr f₂ := absurd t₁ f₂
end)
| inr f₁ := (λ d₂,
match d₂ with
| inl t₂ := absurd t₂ f₁
| inr f₂ := eq.rec_on (proof_irrel f₁ f₂) rfl
end)
end)
protected theorem rec_subsingleton {p : Prop} [H : decidable p]
{H1 : p → Type} {H2 : ¬p → Type}
[H3 : Π(h : p), subsingleton (H1 h)] [H4 : Π(h : ¬p), subsingleton (H2 h)]
: subsingleton (decidable.rec_on H H1 H2) :=
decidable.rec_on H (λh, H3 h) (λh, H4 h) --this can be proven using dependent version of "by_cases"
/- if-then-else -/
2014-12-01 04:34:12 +00:00
definition ite (c : Prop) [H : decidable c] {A : Type} (t e : A) : A :=
decidable.rec_on H (λ Hc, t) (λ Hnc, e)
theorem if_pos {c : Prop} [H : decidable c] (Hc : c) {A : Type} {t e : A} : (if c then t else e) = t :=
2014-12-01 04:34:12 +00:00
decidable.rec
(λ Hc : c, eq.refl (@ite c (decidable.inl Hc) A t e))
(λ Hnc : ¬c, absurd Hc Hnc)
H
theorem if_neg {c : Prop} [H : decidable c] (Hnc : ¬c) {A : Type} {t e : A} : (if c then t else e) = e :=
2014-12-01 04:34:12 +00:00
decidable.rec
(λ Hc : c, absurd Hc Hnc)
(λ Hnc : ¬c, eq.refl (@ite c (decidable.inr Hnc) A t e))
H
theorem if_t_t (c : Prop) [H : decidable c] {A : Type} (t : A) : (if c then t else t) = t :=
2014-12-01 04:34:12 +00:00
decidable.rec
(λ Hc : c, eq.refl (@ite c (decidable.inl Hc) A t t))
(λ Hnc : ¬c, eq.refl (@ite c (decidable.inr Hnc) A t t))
H
theorem implies_of_if_pos {c t e : Prop} [H : decidable c] (h : if c then t else e) : c → t :=
assume Hc, eq.rec_on (if_pos Hc) h
theorem implies_of_if_neg {c t e : Prop} [H : decidable c] (h : if c then t else e) : ¬c → e :=
assume Hnc, eq.rec_on (if_neg Hnc) h
theorem if_ctx_congr {A : Type} {b c : Prop} [dec_b : decidable b] [dec_c : decidable c]
{x y u v : A}
(h_c : b ↔ c) (h_t : c → x = u) (h_e : ¬c → y = v) :
(if b then x else y) = (if c then u else v) :=
decidable.rec_on dec_b
(λ hp : b, calc
(if b then x else y)
= x : if_pos hp
... = u : h_t (iff.mp h_c hp)
... = (if c then u else v) : if_pos (iff.mp h_c hp))
(λ hn : ¬b, calc
(if b then x else y)
= y : if_neg hn
... = v : h_e (iff.mp (not_iff_not_of_iff h_c) hn)
... = (if c then u else v) : if_neg (iff.mp (not_iff_not_of_iff h_c) hn))
theorem if_congr {A : Type} {b c : Prop} [dec_b : decidable b] [dec_c : decidable c]
{x y u v : A}
(h_c : b ↔ c) (h_t : x = u) (h_e : y = v) :
(if b then x else y) = (if c then u else v) :=
@if_ctx_congr A b c dec_b dec_c x y u v h_c (λ h, h_t) (λ h, h_e)
theorem if_ctx_rw_congr {A : Type} {b c : Prop} [dec_b : decidable b] {x y u v : A}
(h_c : b ↔ c) (h_t : c → x = u) (h_e : ¬c → y = v) :
(if b then x else y) = (@ite c (decidable_of_decidable_of_iff dec_b h_c) A u v) :=
@if_ctx_congr A b c dec_b (decidable_of_decidable_of_iff dec_b h_c) x y u v h_c h_t h_e
theorem if_rw_congr {A : Type} {b c : Prop} [dec_b : decidable b] {x y u v : A}
(h_c : b ↔ c) (h_t : x = u) (h_e : y = v) :
(if b then x else y) = (@ite c (decidable_of_decidable_of_iff dec_b h_c) A u v) :=
@if_ctx_rw_congr A b c dec_b x y u v h_c (λ h, h_t) (λ h, h_e)
theorem if_congr_prop {b c x y u v : Prop} [dec_b : decidable b] [dec_c : decidable c]
(h_c : b ↔ c) (h_t : c → (x ↔ u)) (h_e : ¬c → (y ↔ v)) :
if b then x else y ↔ if c then u else v :=
decidable.rec_on dec_b
(λ hp : b, calc
(if b then x else y)
↔ x : iff.of_eq (if_pos hp)
... ↔ u : h_t (iff.mp h_c hp)
... ↔ (if c then u else v) : iff.of_eq (if_pos (iff.mp h_c hp)))
(λ hn : ¬b, calc
(if b then x else y)
↔ y : iff.of_eq (if_neg hn)
... ↔ v : h_e (iff.mp (not_iff_not_of_iff h_c) hn)
... ↔ (if c then u else v) : iff.of_eq (if_neg (iff.mp (not_iff_not_of_iff h_c) hn)))
theorem if_rw_congr_prop {b c x y u v : Prop} [dec_b : decidable b]
(h_c : b ↔ c) (h_t : c → (x ↔ u)) (h_e : ¬c → (y ↔ v)) :
if b then x else y ↔ (@ite c (decidable_of_decidable_of_iff dec_b h_c) Prop u v) :=
@if_congr_prop b c x y u v dec_b (decidable_of_decidable_of_iff dec_b h_c) h_c h_t h_e
2014-12-01 04:34:12 +00:00
-- We use "dependent" if-then-else to be able to communicate the if-then-else condition
-- to the branches
definition dite (c : Prop) [H : decidable c] {A : Type} (t : c → A) (e : ¬ c → A) : A :=
decidable.rec_on H (λ Hc, t Hc) (λ Hnc, e Hnc)
theorem dif_pos {c : Prop} [H : decidable c] (Hc : c) {A : Type} {t : c → A} {e : ¬ c → A} : (if H : c then t H else e H) = t Hc :=
2014-12-01 04:34:12 +00:00
decidable.rec
(λ Hc : c, eq.refl (@dite c (decidable.inl Hc) A t e))
(λ Hnc : ¬c, absurd Hc Hnc)
H
theorem dif_neg {c : Prop} [H : decidable c] (Hnc : ¬c) {A : Type} {t : c → A} {e : ¬ c → A} : (if H : c then t H else e H) = e Hnc :=
2014-12-01 04:34:12 +00:00
decidable.rec
(λ Hc : c, absurd Hc Hnc)
(λ Hnc : ¬c, eq.refl (@dite c (decidable.inr Hnc) A t e))
H
theorem dif_ctx_congr {A : Type} {b c : Prop} [dec_b : decidable b] [dec_c : decidable c]
{x : b → A} {u : c → A} {y : ¬b → A} {v : ¬c → A}
(h_c : b ↔ c)
(h_t : ∀ (h : c), x (iff.mp' h_c h) = u h)
(h_e : ∀ (h : ¬c), y (iff.mp' (not_iff_not_of_iff h_c) h) = v h) :
(@dite b dec_b A x y) = (@dite c dec_c A u v) :=
decidable.rec_on dec_b
(λ hp : b, calc
(if h : b then x h else y h)
= x hp : dif_pos hp
... = x (iff.mp' h_c (iff.mp h_c hp)) : proof_irrel
... = u (iff.mp h_c hp) : h_t
... = (if h : c then u h else v h) : dif_pos (iff.mp h_c hp))
(λ hn : ¬b,
let h_nc : ¬b ↔ ¬c := not_iff_not_of_iff h_c in
calc
(if h : b then x h else y h)
= y hn : dif_neg hn
... = y (iff.mp' h_nc (iff.mp h_nc hn)) : proof_irrel
... = v (iff.mp h_nc hn) : h_e
... = (if h : c then u h else v h) : dif_neg (iff.mp h_nc hn))
theorem dif_ctx_rw_congr {A : Type} {b c : Prop} [dec_b : decidable b]
{x : b → A} {u : c → A} {y : ¬b → A} {v : ¬c → A}
(h_c : b ↔ c)
(h_t : ∀ (h : c), x (iff.mp' h_c h) = u h)
(h_e : ∀ (h : ¬c), y (iff.mp' (not_iff_not_of_iff h_c) h) = v h) :
(@dite b dec_b A x y) = (@dite c (decidable_of_decidable_of_iff dec_b h_c) A u v) :=
@dif_ctx_congr A b c dec_b (decidable_of_decidable_of_iff dec_b h_c) x u y v h_c h_t h_e
2014-12-01 04:34:12 +00:00
-- Remark: dite and ite are "definitionally equal" when we ignore the proofs.
theorem dite_ite_eq (c : Prop) [H : decidable c] {A : Type} (t : A) (e : A) : dite c (λh, t) (λh, e) = ite c t e :=
rfl
definition is_true (c : Prop) [H : decidable c] : Prop :=
if c then true else false
definition is_false (c : Prop) [H : decidable c] : Prop :=
if c then false else true
theorem of_is_true {c : Prop} [H₁ : decidable c] (H₂ : is_true c) : c :=
decidable.rec_on H₁ (λ Hc, Hc) (λ Hnc, !false.rec (if_neg Hnc ▸ H₂))
notation `dec_trivial` := of_is_true trivial
theorem not_of_not_is_true {c : Prop} [H₁ : decidable c] (H₂ : ¬ is_true c) : ¬ c :=
decidable.rec_on H₁ (λ Hc, absurd true.intro (if_pos Hc ▸ H₂)) (λ Hnc, Hnc)
theorem not_of_is_false {c : Prop} [H₁ : decidable c] (H₂ : is_false c) : ¬ c :=
decidable.rec_on H₁ (λ Hc, !false.rec (if_pos Hc ▸ H₂)) (λ Hnc, Hnc)
theorem of_not_is_false {c : Prop} [H₁ : decidable c] (H₂ : ¬ is_false c) : c :=
decidable.rec_on H₁ (λ Hc, Hc) (λ Hnc, absurd true.intro (if_neg Hnc ▸ H₂))