lean2/src/kernel/builtin.cpp

252 lines
9.7 KiB
C++
Raw Normal View History

/*
Copyright (c) 2013 Microsoft Corporation. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Author: Leonardo de Moura
*/
#include "builtin.h"
#include "environment.h"
#include "abstract.h"
#ifndef LEAN_DEFAULT_LEVEL_SEPARATION
#define LEAN_DEFAULT_LEVEL_SEPARATION 512
#endif
namespace lean {
expr mk_bin_op(expr const & op, expr const & unit, unsigned num_args, expr const * args) {
if (num_args == 0) {
return unit;
} else {
expr r = args[num_args - 1];
unsigned i = num_args - 1;
while (i > 0) {
--i;
r = mk_app({op, args[i], r});
}
return r;
}
}
expr mk_bin_op(expr const & op, expr const & unit, std::initializer_list<expr> const & l) {
return mk_bin_op(op, unit, l.size(), l.begin());
}
class bool_type_value : public value {
public:
static char const * g_kind;
virtual ~bool_type_value() {}
char const * kind() const { return g_kind; }
virtual expr get_type() const { return Type(); }
virtual bool normalize(unsigned num_args, expr const * args, expr & r) const { return false; }
virtual bool operator==(value const & other) const { return other.kind() == kind(); }
virtual void display(std::ostream & out) const { out << "bool"; }
virtual format pp() const { return format("bool"); }
virtual unsigned hash() const { return 17; }
};
char const * bool_type_value::g_kind = "bool";
MK_BUILTIN(bool_type, bool_type_value);
class bool_value_value : public value {
bool m_val;
public:
static char const * g_kind;
bool_value_value(bool v):m_val(v) {}
virtual ~bool_value_value() {}
char const * kind() const { return g_kind; }
virtual expr get_type() const { return Bool; }
virtual bool normalize(unsigned num_args, expr const * args, expr & r) const { return false; }
virtual bool operator==(value const & other) const {
return other.kind() == kind() && m_val == static_cast<bool_value_value const &>(other).m_val;
}
virtual void display(std::ostream & out) const { out << (m_val ? "true" : "false"); }
virtual format pp() const { return format(m_val ? "true" : "false"); }
virtual unsigned hash() const { return m_val ? 3 : 5; }
bool get_val() const { return m_val; }
};
char const * bool_value_value::g_kind = "bool_value";
expr mk_bool_value(bool v) {
static thread_local expr true_val = mk_value(*(new bool_value_value(true)));
static thread_local expr false_val = mk_value(*(new bool_value_value(false)));
return v ? true_val : false_val;
}
bool is_bool_value(expr const & e) {
return is_value(e) && to_value(e).kind() == bool_value_value::g_kind;
}
bool to_bool(expr const & e) {
lean_assert(is_bool_value(e));
return static_cast<bool_value_value const &>(to_value(e)).get_val();
}
bool is_true(expr const & e) {
return is_bool_value(e) && to_bool(e);
}
bool is_false(expr const & e) {
return is_bool_value(e) && !to_bool(e);
}
static level m_lvl(name("m"));
static level u_lvl(name("u"));
expr mk_type_m() {
static thread_local expr r = Type(m_lvl);
return r;
}
expr mk_type_u() {
static thread_local expr r = Type(u_lvl);
return r;
}
class if_fn_value : public value {
expr m_type;
public:
static char const * g_kind;
if_fn_value() {
expr A = Const("A");
// Pi (A: Type), bool -> A -> A -> A
m_type = Pi({A, TypeU}, Bool >> (A >> (A >> A)));
}
virtual ~if_fn_value() {}
char const * kind() const { return g_kind; }
virtual expr get_type() const { return m_type; }
virtual bool normalize(unsigned num_args, expr const * args, expr & r) const {
if (num_args == 5 && is_bool_value(args[2])) {
if (to_bool(args[2]))
r = args[3]; // if A true a b --> a
else
r = args[4]; // if A false a b --> b
return true;
} if (num_args == 5 && args[3] == args[4]) {
r = args[3]; // if A c a a --> a
return true;
} else {
return false;
}
}
virtual bool operator==(value const & other) const { return other.kind() == kind(); }
virtual void display(std::ostream & out) const { out << "if"; }
virtual format pp() const { return format("if"); }
virtual unsigned hash() const { return 23; }
};
char const * if_fn_value::g_kind = "if";
MK_BUILTIN(if_fn, if_fn_value);
MK_CONSTANT(and_fn, name("and"));
MK_CONSTANT(or_fn, name("or"));
MK_CONSTANT(not_fn, name("not"));
MK_CONSTANT(forall_fn, name("forall"));
MK_CONSTANT(exists_fn, name("exists"));
MK_CONSTANT(refl_fn, name("refl"));
MK_CONSTANT(subst_fn, name("subst"));
MK_CONSTANT(symm_fn, name("symm"));
MK_CONSTANT(trans_fn, name("trans"));
MK_CONSTANT(congr_fn, name("congr"));
MK_CONSTANT(eq_mp_fn, name("eq_mp"));
MK_CONSTANT(truth, name("truth"));
MK_CONSTANT(eqt_elim_fn, name("eqt_elim"));
MK_CONSTANT(ext_fn, name("ext"));
MK_CONSTANT(foralle_fn, name("foralle"));
MK_CONSTANT(foralli_fn, name("foralli"));
MK_CONSTANT(domain_inj_fn, name("domain_inj"));
MK_CONSTANT(range_inj_fn, name("range_inj"));
void add_basic_theory(environment & env) {
env.define_uvar(uvar_name(m_lvl), level() + LEAN_DEFAULT_LEVEL_SEPARATION);
env.define_uvar(uvar_name(u_lvl), m_lvl + LEAN_DEFAULT_LEVEL_SEPARATION);
expr p1 = Bool >> Bool;
expr p2 = Bool >> p1;
expr A = Const("A");
expr a = Const("a");
expr b = Const("b");
expr c = Const("a");
expr H = Const("H");
expr H1 = Const("H1");
expr H2 = Const("H2");
expr B = Const("B");
expr f = Const("f");
expr g = Const("g");
expr x = Const("x");
expr y = Const("y");
expr P = Const("P");
expr A1 = Const("A1");
expr B1 = Const("B1");
expr a1 = Const("a1");
// and(x, y) = (if bool x y false)
env.add_definition(and_fn_name, p2, Fun({{x, Bool}, {y, Bool}}, bIf(x, y, True)));
// or(x, y) = (if bool x true y)
env.add_definition(or_fn_name, p2, Fun({{x, Bool}, {y, Bool}}, bIf(x, False, y)));
// not(x) = (if bool x false true)
env.add_definition(not_fn_name, p1, Fun({x, Bool}, bIf(x, False, True)));
// forall : Pi (A : Type u), (A -> Bool) -> Bool
expr A_pred = A >> Bool;
expr q_type = Pi({A, TypeU}, A_pred >> Bool);
env.add_var(forall_fn_name, q_type);
env.add_definition(exists_fn_name, q_type, Fun({{A,TypeU}, {P, A_pred}}, Not(Forall(A, Fun({x, A}, Not(P(x)))))));
// refl : Pi (A : Type u) (a : A), a = a
env.add_axiom(refl_fn_name, Pi({{A, TypeU}, {a, A}}, Eq(a, a)));
// subst : Pi (A : Type u) (P : A -> bool) (a b : A) (H1 : P a) (H2 : a = b), P b
env.add_axiom(subst_fn_name, Pi({{A, TypeU}, {P, A_pred}, {a, A}, {b, A}, {H1, P(a)}, {H2, Eq(a,b)}}, P(b)));
// symm : Pi (A : Type u) (a b : A) (H : a = b), b = a :=
// Subst A (Fun x : A => x = a) a b (Refl A a) H
env.add_theorem(symm_fn_name, Pi({{A, TypeU}, {a, A}, {b, A}, {H, Eq(a, b)}}, Eq(b, a)),
Fun({{A, TypeU}, {a, A}, {b, A}, {H, Eq(a, b)}},
Subst(A, Fun({x, A}, Eq(x,a)), a, b, Refl(A, a), H)));
// trans: Pi (A: Type u) (a b c : A) (H1 : a = b) (H2 : b = c), a = c :=
// Subst A (Fun x : A => a = x) b c H1 H2
env.add_theorem(trans_fn_name, Pi({{A, TypeU}, {a, A}, {b, A}, {c, A}, {H1, Eq(a, b)}, {H2, Eq(b, c)}}, Eq(a, c)),
Fun({{A, TypeU}, {a, A}, {b, A}, {c, A}, {H1, Eq(a,b)}, {H2, Eq(b,c)}},
Subst(A, Fun({x, A}, Eq(a, x)), b, c, H1, H2)));
// congr : Pi (A : Type u) (B : A -> Type u) (f g : Pi (x : A) B x) (a b : A) (H1 : f = g) (H2 : a = b), f a = g b
expr piABx = Pi({x, A}, B(x));
expr A_arrow_u = A >> TypeU;
env.add_axiom(congr_fn_name, Pi({{A, TypeU}, {B, A_arrow_u}, {f, piABx}, {g, piABx}, {a, A}, {b, A}, {H1, Eq(f, g)}, {H2, Eq(a, b)}}, Eq(f(a), g(b))));
// eq_mp : Pi (a b: Bool) (H1 : a = b) (H2 : a), b :=
// Subst Bool (Fun x : Bool => x) a b H2 H1
env.add_theorem(eq_mp_fn_name, Pi({{a, Bool}, {b, Bool}, {H1, Eq(a, b)}, {H2, a}}, b),
Fun({{a, Bool}, {b, Bool}, {H1, Eq(a, b)}, {H2, a}},
Subst(Bool, Fun({x, Bool}, x), a, b, H2, H1)));
// truth : True := Refl Bool True
env.add_theorem(truth_name, True, Refl(Bool, True));
// eqt_elim : Pi (a : Bool) (H : a = True), a := EqMP(True, a, Symm(Bool, a, True, H), Truth)
env.add_theorem(eqt_elim_fn_name, Pi({{a, Bool}, {H, Eq(a, True)}}, a),
Fun({{a, Bool}, {H, Eq(a, True)}},
EqMP(True, a, Symm(Bool, a, True, H), Truth)));
// ext : Pi (A : Type u) (B : A -> Type u) (f g : Pi (x : A) B x) (H : Pi x : A, (f x) = (g x)), f = g
env.add_axiom(ext_fn_name, Pi({{A, TypeU}, {B, A_arrow_u}, {f, piABx}, {g, piABx}, {H, Pi({x, A}, Eq(f(x), g(x)))}}, Eq(f, g)));
// foralle : Pi (A : Type u) (P : A -> bool) (H : (forall A P)) (a : A), P a
env.add_axiom(foralle_fn_name, Pi({{A, TypeU}, {P, A_pred}, {H, mk_forall(A, P)}, {a, A}}, P(a)));
// foralli : Pi (A : Type u) (P : A -> bool) (H : Pi (x : A), P x), (forall A P)
env.add_axiom(foralli_fn_name, Pi({{A, TypeU}, {P, A_pred}, {H, Pi({x, A}, P(x))}}, Forall(A, P)));
// domain_inj : Pi (A A1: Type u) (B : A -> Type u) (B1 : A1 -> Type u) (H : (Pi (x : A), B x) = (Pi (x : A1), B1 x)), A = A1
expr piA1B1x = Pi({x, A1}, B1(x));
expr A1_arrow_u = A1 >> TypeU;
env.add_axiom(domain_inj_fn_name, Pi({{A, TypeU}, {A1, TypeU}, {B, A_arrow_u}, {B1, A1_arrow_u}, {H, Eq(piABx, piA1B1x)}}, Eq(A, A1)));
// range_inj : Pi (A A1: Type u) (B : A -> Type u) (B1 : A1 -> Type u) (a : A) (a1 : A1) (H : (Pi (x : A), B x) = (Pi (x : A1), B1 x)), (B a) = (B1 a1)
env.add_axiom(range_inj_fn_name, Pi({{A, TypeU}, {A1, TypeU}, {B, A_arrow_u}, {B1, A1_arrow_u}, {a, A}, {a1, A1}, {H, Eq(piABx, piA1B1x)}}, Eq(B(a), B1(a1))));
}
}