lean2/hott/init/axioms/funext.hlean

35 lines
999 B
Text
Raw Normal View History

2014-12-12 04:14:53 +00:00
-- Copyright (c) 2014 Microsoft Corporation. All rights reserved.
-- Released under Apache 2.0 license as described in the file LICENSE.
-- Author: Jeremy Avigad, Jakob von Raumer
-- Ported from Coq HoTT
2014-12-12 18:17:50 +00:00
prelude
import ..path ..equiv
open eq
2014-12-12 04:14:53 +00:00
-- Funext
-- ------
-- Define function extensionality as a type class
inductive funext [class] : Type :=
mk : (Π (A : Type) (P : A → Type ) (f g : Π x, P x), is_equiv (@apD10 A P f g))
→ funext
namespace funext
universe variables l k
variables [F : funext.{l k}] {A : Type.{l}} {P : A → Type.{k}}
include F
protected definition ap [instance] (f g : Π x, P x) : is_equiv (@apD10 A P f g) :=
rec_on F (λ(H : Π A P f g, _), !H)
2014-12-12 18:17:50 +00:00
definition path_pi {f g : Π x, P x} : f g → f = g :=
2014-12-12 04:14:53 +00:00
is_equiv.inv (@apD10 A P f g)
omit F
definition path_pi2 [F : funext] {A B : Type} {P : A → B → Type}
2014-12-12 18:17:50 +00:00
(f g : Πx y, P x y) : (Πx y, f x y = g x y) → f = g :=
2014-12-12 04:14:53 +00:00
λ E, path_pi (λx, path_pi (E x))
end funext