37 lines
1.4 KiB
Text
37 lines
1.4 KiB
Text
|
import logic data.nat.basic
|
||
|
open nat
|
||
|
|
||
|
inductive vector (A : Type) : nat → Type :=
|
||
|
vnil : vector A zero,
|
||
|
vcons : Π {n : nat}, A → vector A n → vector A (succ n)
|
||
|
|
||
|
namespace vector
|
||
|
definition no_confusion_type {A : Type} {n : nat} (P : Type) (v₁ v₂ : vector A n) : Type :=
|
||
|
cases_on v₁
|
||
|
(cases_on v₂
|
||
|
(P → P)
|
||
|
(λ n₂ h₂ t₂, P))
|
||
|
(λ n₁ h₁ t₁, cases_on v₂
|
||
|
P
|
||
|
(λ n₂ h₂ t₂, (Π (H : n₁ = n₂), h₁ = h₂ → eq.rec_on H t₁ = t₂ → P) → P))
|
||
|
|
||
|
definition no_confusion {A : Type} {n : nat} {P : Type} {v₁ v₂ : vector A n} : v₁ = v₂ → no_confusion_type P v₁ v₂ :=
|
||
|
assume H₁₂ : v₁ = v₂,
|
||
|
have aux : v₁ = v₁ → no_confusion_type P v₁ v₁, from
|
||
|
take H₁₁, cases_on v₁
|
||
|
(assume h : P, h)
|
||
|
(take n₁ h₁ t₁, assume h : (Π (H : n₁ = n₁), h₁ = h₁ → t₁ = t₁ → P),
|
||
|
h rfl rfl rfl),
|
||
|
eq.rec aux H₁₂ H₁₂
|
||
|
|
||
|
theorem vcons.inj₁ {A : Type} {n : nat} (a₁ a₂ : A) (v₁ v₂ : vector A n) : vcons a₁ v₁ = vcons a₂ v₂ → a₁ = a₂ :=
|
||
|
begin
|
||
|
intro h, apply (no_confusion h), intros, assumption
|
||
|
end
|
||
|
|
||
|
theorem vcons.inj₂ {A : Type} {n : nat} (a₁ a₂ : A) (v₁ v₂ : vector A n) : vcons a₁ v₁ = vcons a₂ v₂ → v₁ = v₂ :=
|
||
|
begin
|
||
|
intro h, apply (no_confusion h), intros, eassumption
|
||
|
end
|
||
|
end vector
|