2013-11-29 05:48:30 +00:00
|
|
|
Set: pp::colors
|
|
|
|
Set: pp::unicode
|
|
|
|
Assumed: p
|
|
|
|
Assumed: q
|
|
|
|
Assumed: r
|
|
|
|
Proved: T1
|
|
|
|
Proved: T2
|
2014-01-06 03:10:21 +00:00
|
|
|
theorem T2 : p ⇒ q ⇒ p ∧ q ∧ p :=
|
|
|
|
discharge (λ H : p, discharge (λ H::1 : q, and::intro H (and::intro H::1 H)))
|
2013-11-29 05:48:30 +00:00
|
|
|
Proved: T3
|
2014-01-05 20:05:08 +00:00
|
|
|
theorem T3 : p ⇒ p ∧ q ⇒ r ⇒ q ∧ r ∧ p :=
|
2014-01-06 03:10:21 +00:00
|
|
|
discharge
|
2013-11-29 05:48:30 +00:00
|
|
|
(λ H : p,
|
2014-01-06 03:10:21 +00:00
|
|
|
discharge
|
|
|
|
(λ H::1 : p ∧ q,
|
|
|
|
discharge (λ H::2 : r, and::intro (and::elimr H::1) (and::intro H::2 (and::eliml H::1)))))
|
2013-12-26 23:54:53 +00:00
|
|
|
Proved: T4
|
2014-01-05 20:05:08 +00:00
|
|
|
theorem T4 : p ⇒ p ∧ q ⇒ r ⇒ q ∧ r ∧ p :=
|
2014-01-06 03:10:21 +00:00
|
|
|
discharge
|
2013-12-26 23:54:53 +00:00
|
|
|
(λ H : p,
|
2014-01-06 03:10:21 +00:00
|
|
|
discharge
|
2013-12-26 23:54:53 +00:00
|
|
|
(λ H::1 : p ∧ q,
|
2014-01-06 03:10:21 +00:00
|
|
|
discharge
|
|
|
|
(λ H::2 : r,
|
|
|
|
and::intro (and::elimr H::1) (let H::1::1 := and::eliml H::1 in and::intro H::2 H::1::1))))
|