lean2/tests/lean/run/imp_bang.lean

19 lines
737 B
Text
Raw Normal View History

import logic algebra.category.basic
open eq eq.ops category functor natural_transformation
variables {obC obD : Type} {C : category obC} {D : category obD} {F G H : C ⇒ D}
protected definition compose2 (η : G ⟹ H) (θ : F ⟹ G) : F ⟹ H :=
natural_transformation.mk
(λ a, η a ∘ θ a)
(λ a b f, calc
H f ∘ (η a ∘ θ a) = (H f ∘ η a) ∘ θ a : assoc
... = (η b ∘ G f) ∘ θ a : naturality η f
... = η b ∘ (G f ∘ θ a) : assoc
... = η b ∘ (θ b ∘ F f) : naturality θ f
... = (η b ∘ θ b) ∘ F f : assoc)
theorem tst (a b c : num) (H₁ : ∀ x, b = x) (H₂ : c = b) : a = c :=
calc a = b : H₁
... = c : H₂