lean2/src/util/rb_tree.h

395 lines
12 KiB
C
Raw Normal View History

/*
Copyright (c) 2014 Microsoft Corporation. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Author: Leonardo de Moura
*/
#pragma once
#include <utility>
#include <algorithm>
#include "util/rc.h"
#include "util/debug.h"
#include "util/buffer.h"
#include "util/optional.h"
#include "util/memory_pool.h"
namespace lean {
/**
\brief Left-leaning Red-Black Trees
It uses a O(1) copy operation. Different trees can share nodes.
The sharing is thread-safe.
\c CMP is a functional object for comparing values of type T.
It must have a method
<code>
int operator()(T const & v1, T const & v2) const;
</code>
The method must return
- -1 if <tt>v1 < v2</tt>,
- 0 if <tt>v1 == v2</tt>,
- 1 if <tt>v1 > v2</tt>
*/
template<typename T, typename CMP>
class rb_tree : public CMP {
struct node_cell;
struct node {
node_cell * m_ptr;
node():m_ptr(nullptr) {}
node(node_cell * ptr):m_ptr(ptr) { if (m_ptr) ptr->inc_ref(); }
node(node const & s):m_ptr(s.m_ptr) { if (m_ptr) m_ptr->inc_ref(); }
node(node && s):m_ptr(s.m_ptr) { s.m_ptr = nullptr; }
~node() { if (m_ptr) m_ptr->dec_ref(); }
node & operator=(node const & n) { LEAN_COPY_REF(n); }
node & operator=(node&& n) { LEAN_MOVE_REF(n); }
operator bool() const { return m_ptr != nullptr; }
bool is_shared() const { return m_ptr && m_ptr->get_rc() > 1; }
bool is_red() const { return m_ptr && m_ptr->m_red; }
bool is_black() const { return !is_red(); }
node_cell * operator->() const { lean_assert(m_ptr); return m_ptr; }
friend bool is_eqp(node const & n1, node const & n2) { return n1.m_ptr == n2.m_ptr; }
friend void swap(node & n1, node & n2) { std::swap(n1.m_ptr, n2.m_ptr); }
node steal() { node r; swap(r, *this); return r; }
};
struct node_cell {
node m_left;
node m_right;
T m_value;
bool m_red;
MK_LEAN_RC();
void dealloc();
node_cell(T const & v):m_value(v), m_red(true), m_rc(0) {}
node_cell(node_cell const & s):m_left(s.m_left), m_right(s.m_right), m_value(s.m_value), m_red(s.m_red), m_rc(0) {}
};
int cmp(T const & v1, T const & v2) const {
return CMP::operator()(v1, v2);
}
static node ensure_unshared(node && n) {
if (n.is_shared()) {
return node(new node_cell(*n.m_ptr));
} else {
return n;
}
}
static node set_black(node && n) {
if (n.is_black())
return n;
node r = ensure_unshared(n.steal());
r->m_red = false;
return r;
}
static node rotate_left(node && h) {
lean_assert(!h.is_shared());
node x = ensure_unshared(h->m_right.steal());
lean_assert(!h->m_right); // x stole the ownership of h->m_right
h->m_right = x->m_left;
x->m_left = h;
x->m_red = h->m_red;
h->m_red = true;
return x;
}
static node rotate_right(node && h) {
lean_assert(!h.is_shared());
node x = ensure_unshared(h->m_left.steal());
lean_assert(!h->m_left); // x stole the ownership of h->m_left
h->m_left = x->m_right;
x->m_right = h;
x->m_red = h->m_red;
h->m_red = true;
return x;
}
static node flip_colors(node && h) {
lean_assert(!h.is_shared());
h->m_red = !h->m_red;
h->m_left = ensure_unshared(h->m_left.steal());
h->m_right = ensure_unshared(h->m_right.steal());
h->m_left->m_red = !h->m_left->m_red;
h->m_right->m_red = !h->m_right->m_red;
return h;
}
static node fixup(node && h) {
lean_assert(!h.is_shared());
if (h->m_right.is_red() && !h->m_left.is_red())
h = rotate_left(h.steal());
if (h->m_left.is_red() && h->m_left->m_left.is_red())
h = rotate_right(h.steal());
if (h->m_left.is_red() && h->m_right.is_red())
h = flip_colors(h.steal());
return h;
}
node insert(node && n, T const & v) {
if (!n) {
return node(new node_cell(v));
}
node h = ensure_unshared(n.steal());
int c = cmp(v, h->m_value);
if (c == 0)
h->m_value = v;
else if (c < 0)
h->m_left = insert(h->m_left.steal(), v);
else
h->m_right = insert(h->m_right.steal(), v);
return fixup(h.steal());
}
static node move_red_left(node && h) {
lean_assert(!h.is_shared());
h = flip_colors(h.steal());
if (h->m_right && h->m_right->m_left.is_red()) {
h->m_right = rotate_right(h->m_right.steal());
h = rotate_left(h.steal());
return flip_colors(h.steal());
} else {
return h;
}
}
static node move_red_right(node && h) {
lean_assert(!h.is_shared());
h = flip_colors(h.steal());
if (h->m_left && h->m_left->m_left.is_red()) {
h = rotate_right(h.steal());
return flip_colors(h.steal());
} else {
return h;
}
}
static node erase_min(node && n) {
if (!n->m_left)
return node();
node h = ensure_unshared(n.steal());
if (!h->m_left.is_red() && !h->m_left->m_left.is_red())
h = move_red_left(h.steal());
h->m_left = erase_min(h->m_left.steal());
return fixup(h.steal());
}
static T const * min(node const & n) {
node_cell const * it = n.m_ptr;
if (!it)
return nullptr;
while (it->m_left)
it = it->m_left.m_ptr;
return &it->m_value;
}
static T const * max(node const & n) {
node_cell const * it = n.m_ptr;
if (!it)
return nullptr;
while (it->m_right)
it = it->m_right.m_ptr;
return &it->m_value;
}
node erase(node && n, T const & v) {
lean_assert(n);
node h = ensure_unshared(n.steal());
if (cmp(v, h->m_value) < 0) {
lean_assert(h->m_left); // the tree contains v
if (!h->m_left.is_red() && !h->m_left->m_left.is_red())
h = move_red_left(h.steal());
h->m_left = erase(h->m_left.steal(), v);
} else {
if (h->m_left.is_red())
h = rotate_right(h.steal());
if (cmp(v, h->m_value) == 0 && !h->m_right)
return node();
lean_assert(h->m_right);
if (!h->m_right.is_red() && !h->m_right->m_left.is_red())
h = move_red_right(h.steal());
if (cmp(v, h->m_value) == 0) {
h->m_value = *min(h->m_right);
h->m_right = erase_min(h->m_right.steal());
} else {
h->m_right = erase(h->m_right.steal(), v);
}
}
return fixup(h.steal());
}
template<typename F>
static void for_each(F && f, node_cell const * n) {
if (n) {
for_each(f, n->m_left.m_ptr);
f(n->m_value);
for_each(f, n->m_right.m_ptr);
}
}
static void display(std::ostream & out, node_cell const * n) {
if (n) {
out << "(";
if (n->m_red)
out << "*";
out << n->m_value << " ";
display(out, n->m_left.m_ptr);
out << " ";
display(out, n->m_right.m_ptr);
out << ")";
} else {
out << "nil";
}
}
static unsigned get_depth(node_cell const * n) {
if (n)
return std::max(get_depth(n->m_left.m_ptr), get_depth(n->m_right.m_ptr)) + 1;
else
return 0;
}
static void to_buffer(node_cell const * n, buffer<T> & r) {
if (n) {
to_buffer(n->m_left.m_ptr, r);
r.push_back(n->m_value);
to_buffer(n->m_right.m_ptr, r);
}
}
bool check_invariant(node_cell const * n, unsigned curr_black, optional<unsigned> & num_black) const {
// We check:
// 1) the nodes are really ordered, that is, left->value < n->value < right->value
// 2) there are no two consecutive red nodes
// 3) every path has the same number of black nodes
if (n) {
if (!n->m_red)
curr_black++;
if (n->m_left) {
lean_assert(!n->m_red || !n->m_left.is_red());
check_invariant(n->m_left.m_ptr, curr_black, num_black);
lean_assert(cmp(n->m_left->m_value, n->m_value) < 0);
}
if (n->m_right) {
lean_assert(!n->m_red || !n->m_right.is_red());
check_invariant(n->m_right.m_ptr, curr_black, num_black);
lean_assert(cmp(n->m_value, n->m_right->m_value) < 0);
}
} else {
// end of a path
if (num_black) {
lean_assert(curr_black == *num_black);
} else {
num_black = curr_black;
}
}
return true;
}
node m_root;
public:
rb_tree(CMP const & cmp = CMP()):CMP(cmp) {}
rb_tree(rb_tree const & s):CMP(s), m_root(s.m_root) {}
rb_tree(rb_tree && s):CMP(s), m_root(s.m_root) {}
rb_tree & operator=(rb_tree const & s) { m_root = s.m_root; return *this; }
rb_tree & operator=(rb_tree && s) { m_root = s.m_root; return *this; }
unsigned get_rc() const { return m_root ? m_root->get_rc() : 0; }
void insert(T const & v) {
m_root = set_black(insert(m_root.steal(), v));
lean_assert(check_invariant());
}
void erase_min() {
m_root = set_black(erase_min(m_root.steal()));
lean_assert(check_invariant());
}
void erase_core(T const & v) {
lean_assert(contains(v));
m_root = set_black(erase(m_root.steal(), v));
lean_assert(check_invariant());
}
void erase(T const & v) {
if (contains(v))
erase_core(v);
}
T const * find(T const & v) const {
node_cell const * h = m_root.m_ptr;
while (h) {
int c = cmp(v, h->m_value);
if (c == 0)
return &(h->m_value);
else if (c < 0)
h = h->m_left.m_ptr;
else
h = h->m_right.m_ptr;
}
return nullptr;
}
T const * min() const { return min(m_root); }
T const * max() const { return max(m_root); }
bool contains(T const & v) const { return find(v) != nullptr; }
template<typename F>
void for_each(F && f) const { for_each(f, m_root.m_ptr); }
// For debugging purposes
void display(std::ostream & out) const { display(out, m_root.m_ptr); }
unsigned get_depth() const { return get_depth(m_root.m_ptr); }
unsigned size() const {
unsigned r = 0;
for_each([&](T const & ){ r = r + 1; });
return r;
}
bool empty() const { return m_root.m_ptr == nullptr; }
void clear() { m_root = node(); }
friend std::ostream & operator<<(std::ostream & out, rb_tree const & t) {
t.display(out);
return out;
}
bool check_invariant() const {
optional<unsigned> num_black;
return check_invariant(m_root.m_ptr, 0, num_black);
}
/**
\brief Copy the contents of this tree to the given buffer.
The elements will be stored in increasing order.
*/
void to_buffer(buffer<T> & r) const {
to_buffer(m_root.m_ptr, r);
}
};
template<typename T, typename CMP>
void rb_tree<T, CMP>::node_cell::dealloc() {
delete this;
}
template<typename T, typename CMP>
rb_tree<T, CMP> insert(rb_tree<T, CMP> const & t, T const & v) { rb_tree<T, CMP> r(t); r.insert(v); return r; }
template<typename T, typename CMP>
rb_tree<T, CMP> erase(rb_tree<T, CMP> const & t, T const & v) { rb_tree<T, CMP> r(t); r.erase(v); return r; }
struct unsigned_cmp {
int operator()(unsigned i1, unsigned i2) const { return i1 < i2 ? -1 : (i1 == i2 ? 0 : 1); }
};
struct int_cmp {
int operator()(int i1, int i2) const { return i1 < i2 ? -1 : (i1 == i2 ? 0 : 1); }
};
}