lean2/hott/hit/pushout.hlean

235 lines
8.5 KiB
Text
Raw Normal View History

2015-04-04 04:20:19 +00:00
/-
Copyright (c) 2015 Floris van Doorn. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Floris van Doorn
Declaration of the pushout
2015-04-04 04:20:19 +00:00
-/
import .quotient cubical.square types.sigma
open quotient eq sum equiv equiv.ops is_trunc
2015-04-04 04:20:19 +00:00
namespace pushout
section
2015-04-04 04:20:19 +00:00
parameters {TL BL TR : Type} (f : TL → BL) (g : TL → TR)
local abbreviation A := BL + TR
inductive pushout_rel : A → A → Type :=
| Rmk : Π(x : TL), pushout_rel (inl (f x)) (inr (g x))
open pushout_rel
local abbreviation R := pushout_rel
definition pushout : Type := quotient R -- TODO: define this in root namespace
2015-04-04 04:20:19 +00:00
parameters {f g}
definition inl (x : BL) : pushout :=
class_of R (inl x)
2015-04-04 04:20:19 +00:00
definition inr (x : TR) : pushout :=
class_of R (inr x)
2015-04-04 04:20:19 +00:00
definition glue (x : TL) : inl (f x) = inr (g x) :=
eq_of_rel pushout_rel (Rmk f g x)
2015-04-04 04:20:19 +00:00
protected definition rec {P : pushout → Type} (Pinl : Π(x : BL), P (inl x))
(Pinr : Π(x : TR), P (inr x)) (Pglue : Π(x : TL), Pinl (f x) =[glue x] Pinr (g x))
2015-04-04 04:20:19 +00:00
(y : pushout) : P y :=
begin
induction y,
{ cases a,
apply Pinl,
apply Pinr},
{ cases H, apply Pglue}
2015-04-04 04:20:19 +00:00
end
protected definition rec_on [reducible] {P : pushout → Type} (y : pushout)
(Pinl : Π(x : BL), P (inl x)) (Pinr : Π(x : TR), P (inr x))
(Pglue : Π(x : TL), Pinl (f x) =[glue x] Pinr (g x)) : P y :=
2015-04-04 04:20:19 +00:00
rec Pinl Pinr Pglue y
theorem rec_glue {P : pushout → Type} (Pinl : Π(x : BL), P (inl x))
(Pinr : Π(x : TR), P (inr x)) (Pglue : Π(x : TL), Pinl (f x) =[glue x] Pinr (g x))
(x : TL) : apdo (rec Pinl Pinr Pglue) (glue x) = Pglue x :=
!rec_eq_of_rel
protected definition elim {P : Type} (Pinl : BL → P) (Pinr : TR → P)
(Pglue : Π(x : TL), Pinl (f x) = Pinr (g x)) (y : pushout) : P :=
rec Pinl Pinr (λx, pathover_of_eq (Pglue x)) y
protected definition elim_on [reducible] {P : Type} (y : pushout) (Pinl : BL → P)
(Pinr : TR → P) (Pglue : Π(x : TL), Pinl (f x) = Pinr (g x)) : P :=
elim Pinl Pinr Pglue y
2015-04-04 04:20:19 +00:00
theorem elim_glue {P : Type} (Pinl : BL → P) (Pinr : TR → P)
(Pglue : Π(x : TL), Pinl (f x) = Pinr (g x)) (x : TL)
: ap (elim Pinl Pinr Pglue) (glue x) = Pglue x :=
begin
apply eq_of_fn_eq_fn_inv !(pathover_constant (glue x)),
rewrite [▸*,-apdo_eq_pathover_of_eq_ap,↑pushout.elim,rec_glue],
end
2015-04-04 04:20:19 +00:00
protected definition elim_type (Pinl : BL → Type) (Pinr : TR → Type)
(Pglue : Π(x : TL), Pinl (f x) ≃ Pinr (g x)) (y : pushout) : Type :=
elim Pinl Pinr (λx, ua (Pglue x)) y
protected definition elim_type_on [reducible] (y : pushout) (Pinl : BL → Type)
(Pinr : TR → Type) (Pglue : Π(x : TL), Pinl (f x) ≃ Pinr (g x)) : Type :=
elim_type Pinl Pinr Pglue y
theorem elim_type_glue (Pinl : BL → Type) (Pinr : TR → Type)
(Pglue : Π(x : TL), Pinl (f x) ≃ Pinr (g x)) (x : TL)
: transport (elim_type Pinl Pinr Pglue) (glue x) = Pglue x :=
by rewrite [tr_eq_cast_ap_fn,↑elim_type,elim_glue];apply cast_ua_fn
2015-04-04 04:20:19 +00:00
protected definition rec_prop {P : pushout → Type} [H : Πx, is_prop (P x)]
(Pinl : Π(x : BL), P (inl x)) (Pinr : Π(x : TR), P (inr x)) (y : pushout) :=
rec Pinl Pinr (λx, !is_prop.elimo) y
protected definition elim_prop {P : Type} [H : is_prop P] (Pinl : BL → P) (Pinr : TR → P)
(y : pushout) : P :=
elim Pinl Pinr (λa, !is_prop.elim) y
end
end pushout
attribute pushout.inl pushout.inr [constructor]
attribute pushout.rec pushout.elim [unfold 10] [recursor 10]
attribute pushout.elim_type [unfold 9]
attribute pushout.rec_on pushout.elim_on [unfold 7]
attribute pushout.elim_type_on [unfold 6]
open sigma
namespace pushout
variables {TL BL TR : Type} (f : TL → BL) (g : TL → TR)
/- The non-dependent universal property -/
definition pushout_arrow_equiv (C : Type)
: (pushout f g → C) ≃ (Σ(i : BL → C) (j : TR → C), Πc, i (f c) = j (g c)) :=
begin
fapply equiv.MK,
{ intro f, exact ⟨λx, f (inl x), λx, f (inr x), λx, ap f (glue x)⟩},
{ intro v x, induction v with i w, induction w with j p, induction x,
exact (i a), exact (j a), exact (p x)},
{ intro v, induction v with i w, induction w with j p, esimp,
apply ap (λp, ⟨i, j, p⟩), apply eq_of_homotopy, intro x, apply elim_glue},
{ intro f, apply eq_of_homotopy, intro x, induction x: esimp,
apply eq_pathover, apply hdeg_square, esimp, apply elim_glue},
end
end pushout
open function sigma.ops
namespace pushout
/- The flattening lemma -/
section
universe variable u
parameters {TL BL TR : Type} (f : TL → BL) (g : TL → TR)
(Pinl : BL → Type.{u}) (Pinr : TR → Type.{u})
(Pglue : Π(x : TL), Pinl (f x) ≃ Pinr (g x))
include Pglue
local abbreviation A := BL + TR
local abbreviation R : A → A → Type := pushout_rel f g
local abbreviation P [unfold 5] := pushout.elim_type Pinl Pinr Pglue
local abbreviation F : sigma (Pinl ∘ f) → sigma Pinl :=
λz, ⟨ f z.1 , z.2 ⟩
local abbreviation G : sigma (Pinl ∘ f) → sigma Pinr :=
λz, ⟨ g z.1 , Pglue z.1 z.2 ⟩
local abbreviation Pglue' : Π ⦃a a' : A⦄,
R a a' → sum.rec Pinl Pinr a ≃ sum.rec Pinl Pinr a' :=
@pushout_rel.rec TL BL TR f g
(λ ⦃a a' ⦄ (r : R a a'),
(sum.rec Pinl Pinr a) ≃ (sum.rec Pinl Pinr a')) Pglue
protected definition flattening : sigma P ≃ pushout F G :=
begin
have H : Πz, P z ≃ quotient.elim_type (sum.rec Pinl Pinr) Pglue' z,
begin
intro z, apply equiv_of_eq,
have H1 : pushout.elim_type Pinl Pinr Pglue
= quotient.elim_type (sum.rec Pinl Pinr) Pglue',
begin
change
quotient.rec (sum.rec Pinl Pinr)
(λa a' r, pushout_rel.cases_on r (λx, pathover_of_eq (ua (Pglue x))))
= quotient.rec (sum.rec Pinl Pinr)
(λa a' r, pathover_of_eq (ua (pushout_rel.cases_on r Pglue))),
have H2 : Π⦃a a'⦄ r : pushout_rel f g a a',
pushout_rel.cases_on r (λx, pathover_of_eq (ua (Pglue x)))
= pathover_of_eq (ua (pushout_rel.cases_on r Pglue))
:> sum.rec Pinl Pinr a =[eq_of_rel (pushout_rel f g) r]
sum.rec Pinl Pinr a',
begin intros a a' r, cases r, reflexivity end,
rewrite (eq_of_homotopy3 H2)
end,
apply ap10 H1
end,
apply equiv.trans (sigma_equiv_sigma_right H),
apply equiv.trans (quotient.flattening.flattening_lemma R (sum.rec Pinl Pinr) Pglue'),
fapply equiv.MK,
{ intro q, induction q with z z z' fr,
{ induction z with a p, induction a with x x,
{ exact inl ⟨x, p⟩ },
{ exact inr ⟨x, p⟩ } },
{ induction fr with a a' r p, induction r with x,
exact glue ⟨x, p⟩ } },
{ intro q, induction q with xp xp xp,
{ exact class_of _ ⟨sum.inl xp.1, xp.2⟩ },
{ exact class_of _ ⟨sum.inr xp.1, xp.2⟩ },
{ apply eq_of_rel, constructor } },
{ intro q, induction q with xp xp xp: induction xp with x p,
{ apply ap inl, reflexivity },
{ apply ap inr, reflexivity },
{ unfold F, unfold G, apply eq_pathover,
rewrite [ap_id,ap_compose' (quotient.elim _ _)],
krewrite elim_glue, krewrite elim_eq_of_rel, apply hrefl } },
{ intro q, induction q with z z z' fr,
{ induction z with a p, induction a with x x,
{ reflexivity },
{ reflexivity } },
{ induction fr with a a' r p, induction r with x,
esimp, apply eq_pathover,
rewrite [ap_id,ap_compose' (pushout.elim _ _ _)],
krewrite elim_eq_of_rel, krewrite elim_glue, apply hrefl } }
end
end
-- Commutativity of pushouts
section
variables {TL BL TR : Type} (f : TL → BL) (g : TL → TR)
protected definition transpose [constructor] : pushout f g → pushout g f :=
begin
intro x, induction x, apply inr a, apply inl a, apply !glue⁻¹
end
--TODO prove without krewrite?
protected definition transpose_involutive (x : pushout f g) :
pushout.transpose g f (pushout.transpose f g x) = x :=
begin
induction x, apply idp, apply idp,
apply eq_pathover, refine _ ⬝hp !ap_id⁻¹,
refine !(ap_compose (pushout.transpose _ _)) ⬝ph _, esimp[pushout.transpose],
krewrite [elim_glue, ap_inv, elim_glue, inv_inv], apply hrfl
end
protected definition symm : pushout f g ≃ pushout g f :=
begin
fapply equiv.MK, do 2 exact !pushout.transpose,
do 2 (intro x; apply pushout.transpose_involutive),
end
end
end pushout