lean2/tests/lean/run/sigma_no_confusion.lean

30 lines
1.2 KiB
Text
Raw Normal View History

import data.sigma
namespace sigma
namespace manual
definition no_confusion_type {A : Type} {B : A → Type} (P : Type) (v₁ v₂ : sigma B) : Type :=
sigma.rec_on v₁
(λ (a₁ : A) (b₁ : B a₁), sigma.rec_on v₂
(λ (a₂ : A) (b₂ : B a₂),
(Π (eq₁ : a₁ = a₂), eq.rec_on eq₁ b₁ = b₂ → P) → P))
definition no_confusion {A : Type} {B : A → Type} {P : Type} {v₁ v₂ : sigma B} : v₁ = v₂ → no_confusion_type P v₁ v₂ :=
assume H₁₂ : v₁ = v₂,
have aux : v₁ = v₁ → no_confusion_type P v₁ v₁, from
assume H₁₁, sigma.rec_on v₁
(λ (a₁ : A) (b₁ : B a₁) (h : Π (eq₁ : a₁ = a₁), eq.rec_on eq₁ b₁ = b₁ → P),
h rfl rfl),
eq.rec_on H₁₂ aux H₁₂
end manual
theorem sigma.mk.inj_1 {A : Type} {B : A → Type} {a₁ a₂ : A} {b₁ : B a₁} {b₂ : B a₂} (Heq : mk a₁ b₁ = mk a₂ b₂) : a₁ = a₂ :=
begin
apply (sigma.no_confusion Heq), intros, assumption
end
theorem sigma.mk.inj_2 {A : Type} {B : A → Type} (a₁ a₂ : A) (b₁ : B a₁) (b₂ : B a₂) (Heq : mk a₁ b₁ = mk a₂ b₂) : b₁ == b₂ :=
begin
apply (sigma.no_confusion Heq), intros, eassumption
end
end sigma