100 lines
5.3 KiB
Text
100 lines
5.3 KiB
Text
|
import logic.cast data.list data.sigma
|
||
|
|
||
|
-- The (pre-)quotient type kernel extension would add the following constants
|
||
|
-- quot, pquot.mk, pquot.eqv and pquot.rec
|
||
|
-- and a computational rule, which we call pquot.comp here.
|
||
|
-- Note that, these constants do not assume the environment contains =
|
||
|
constant pquot.{l} {A : Type.{l}} (R : A → A → Prop) : Type.{l}
|
||
|
|
||
|
constant pquot.abs {A : Type} (R : A → A → Prop) : A → pquot R
|
||
|
-- pquot.eqv is a way to say R a b → (pquot.abs R a) = (pquot.abs R b) without mentioning equality
|
||
|
constant pquot.eqv {A : Type} (R : A → A → Prop) {a b : A} : R a b → ∀ (P : pquot R → Prop), P (pquot.abs R a) → P (pquot.abs R b)
|
||
|
constant pquot.rec {A : Type} {R : A → A → Prop} {C : pquot R → Type}
|
||
|
(f : Π a, C (pquot.abs R a))
|
||
|
-- sound is essentially saying: ∀ (a b : A) (H : R a b), f a == f b
|
||
|
-- H makes sure we can only define a function on (quot R) if for all a b : A
|
||
|
-- R a b → f a == f b
|
||
|
(sound : ∀ a b, R a b → ∀ P : (Π (q : pquot R), C q → Prop), P (pquot.abs R a) (f a) → P (pquot.abs R b) (f b))
|
||
|
(q : pquot R)
|
||
|
: C q
|
||
|
-- We would also get the following computational rule:
|
||
|
-- pquot.rec R H₁ H₂ (pquot.abs R a) ==> H₁ a
|
||
|
constant pquot.comp {A : Type} {R : A → A → Prop} {C : pquot R → Type}
|
||
|
(f : Π a, C (pquot.abs R a))
|
||
|
(sound : ∀ a b, R a b → ∀ P : (Π (q : pquot R), C q → Prop), P (pquot.abs R a) (f a) → P (pquot.abs R b) (f b))
|
||
|
(a : A)
|
||
|
-- In the implementation this would be a computational rule
|
||
|
: pquot.rec f sound (pquot.abs R a) = f a
|
||
|
|
||
|
-- If the environment contains = and ==, then we can define
|
||
|
|
||
|
definition pquot.eq {A : Type} (R : A → A → Prop) {a b : A} (H : R a b) : pquot.abs R a = pquot.abs R b :=
|
||
|
have aux : ∀ (P : pquot R → Prop), P (pquot.abs R a) → P (pquot.abs R b), from
|
||
|
pquot.eqv R H,
|
||
|
aux (λ x : pquot R, pquot.abs R a = x) rfl
|
||
|
|
||
|
definition pquot.rec_on {A : Type} {R : A → A → Prop} {C : pquot R → Type}
|
||
|
(q : pquot R)
|
||
|
(f : Π a, C (pquot.abs R a))
|
||
|
(sound : ∀ (a b : A), R a b → f a == f b)
|
||
|
: C q :=
|
||
|
pquot.rec f
|
||
|
(λ (a b : A) (H : R a b) (P : Π (q : pquot R), C q → Prop) (Ha : P (pquot.abs R a) (f a)),
|
||
|
have aux₁ : f a == f b, from sound a b H,
|
||
|
have aux₂ : pquot.abs R a = pquot.abs R b, from pquot.eq R H,
|
||
|
have aux₃ : ∀ (c₁ c₂ : C (pquot.abs R a)) (e : c₁ == c₂), P (pquot.abs R a) c₁ → P (pquot.abs R a) c₂, from
|
||
|
λ c₁ c₂ e H, eq.rec_on (heq.to_eq e) H,
|
||
|
have aux₄ : ∀ (c₁ : C (pquot.abs R a)) (c₂ : C (pquot.abs R b)) (e : c₁ == c₂), P (pquot.abs R a) c₁ → P (pquot.abs R b) c₂, from
|
||
|
eq.rec_on aux₂ aux₃,
|
||
|
show P (pquot.abs R b) (f b), from
|
||
|
aux₄ (f a) (f b) aux₁ Ha)
|
||
|
q
|
||
|
|
||
|
definition pquot.lift {A : Type} {R : A → A → Prop} {B : Type}
|
||
|
(f : A → B)
|
||
|
(sound : ∀ (a b : A), R a b → f a = f b)
|
||
|
(q : pquot R)
|
||
|
: B :=
|
||
|
pquot.rec_on q f (λ (a b : A) (H : R a b), heq.from_eq (sound a b H))
|
||
|
|
||
|
theorem pquot.induction_on {A : Type} {R : A → A → Prop} {P : pquot R → Prop}
|
||
|
(q : pquot R)
|
||
|
(f : ∀ a, P (pquot.abs R a))
|
||
|
: P q :=
|
||
|
pquot.rec_on q f (λ (a b : A) (H : R a b),
|
||
|
have aux₁ : pquot.abs R a = pquot.abs R b, from pquot.eq R H,
|
||
|
have aux₂ : P (pquot.abs R a) = P (pquot.abs R b), from congr_arg P aux₁,
|
||
|
have aux₃ : cast aux₂ (f a) = f b, from proof_irrel (cast aux₂ (f a)) (f b),
|
||
|
show f a == f b, from
|
||
|
@cast_to_heq _ _ _ _ aux₂ aux₃)
|
||
|
|
||
|
theorem pquot.abs.surjective {A : Type} {R : A → A → Prop} : ∀ q : pquot R, ∃ x : A, pquot.abs R x = q :=
|
||
|
take q, pquot.induction_on q (take a, exists_intro a rfl)
|
||
|
|
||
|
definition pquot.exact {A : Type} (R : A → A → Prop) :=
|
||
|
∀ a b : A, pquot.abs R a = pquot.abs R b → R a b
|
||
|
|
||
|
-- Definable quotient
|
||
|
structure dquot {A : Type} (R : A → A → Prop) :=
|
||
|
mk :: (rep : pquot R → A)
|
||
|
(complete : ∀a, R (rep (pquot.abs R a)) a)
|
||
|
-- (stable : ∀q, pquot.abs R (rep q) = q)
|
||
|
|
||
|
structure is_equiv {A : Type} (R : A → A → Prop) :=
|
||
|
mk :: (refl : ∀x, R x x)
|
||
|
(symm : ∀{x y}, R x y → R y x)
|
||
|
(trans : ∀{x y z}, R x y → R y z → R x z)
|
||
|
|
||
|
-- Definiable quotients are exact if R is an equivalence relation
|
||
|
theorem quot.exact {A : Type} {R : A → A → Prop} (eqv : is_equiv R) (q : dquot R) : pquot.exact R :=
|
||
|
λ (a b : A) (H : pquot.abs R a = pquot.abs R b),
|
||
|
have H₁ : pquot.abs R a = pquot.abs R a → R (dquot.rep q (pquot.abs R a)) (dquot.rep q (pquot.abs R a)),
|
||
|
from λH, is_equiv.refl eqv _,
|
||
|
have H₂ : pquot.abs R a = pquot.abs R b → R (dquot.rep q (pquot.abs R a)) (dquot.rep q (pquot.abs R b)),
|
||
|
from eq.subst H H₁,
|
||
|
have H₃ : R (dquot.rep q (pquot.abs R a)) (dquot.rep q (pquot.abs R b)),
|
||
|
from H₂ H,
|
||
|
have H₄ : R a (dquot.rep q (pquot.abs R a)), from is_equiv.symm eqv (dquot.complete q a),
|
||
|
have H₅ : R (dquot.rep q (pquot.abs R b)) b, from dquot.complete q b,
|
||
|
is_equiv.trans eqv H₄ (is_equiv.trans eqv H₃ H₅)
|