lean2/hott/homotopy/join.hlean

527 lines
22 KiB
Text
Raw Normal View History

/-
Copyright (c) 2015 Jakob von Raumer. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Jakob von Raumer, Ulrik Buchholtz
Declaration of a join as a special case of a pushout
-/
import hit.pushout .sphere cubical.cube
open eq function prod equiv is_trunc bool sigma.ops
definition join (A B : Type) : Type := @pushout.pushout (A × B) A B pr1 pr2
namespace join
section
variables {A B : Type}
definition inl (a : A) : join A B := @pushout.inl (A × B) A B pr1 pr2 a
definition inr (b : B) : join A B := @pushout.inr (A × B) A B pr1 pr2 b
definition glue (a : A) (b : B) : inl a = inr b :=
@pushout.glue (A × B) A B pr1 pr2 (a, b)
protected definition rec {P : join A B → Type}
(Pinl : Π(x : A), P (inl x))
(Pinr : Π(y : B), P (inr y))
(Pglue : Π(x : A)(y : B), Pinl x =[glue x y] Pinr y)
(z : join A B) : P z :=
pushout.rec Pinl Pinr (prod.rec Pglue) z
protected definition rec_glue {P : join A B → Type}
(Pinl : Π(x : A), P (inl x))
(Pinr : Π(y : B), P (inr y))
(Pglue : Π(x : A)(y : B), Pinl x =[glue x y] Pinr y)
(x : A) (y : B)
: apdo (join.rec Pinl Pinr Pglue) (glue x y) = Pglue x y :=
!quotient.rec_eq_of_rel
protected definition elim {P : Type} (Pinl : A → P) (Pinr : B → P)
(Pglue : Π(x : A)(y : B), Pinl x = Pinr y) (z : join A B) : P :=
join.rec Pinl Pinr (λx y, pathover_of_eq (Pglue x y)) z
protected definition elim_glue {P : Type} (Pinl : A → P) (Pinr : B → P)
(Pglue : Π(x : A)(y : B), Pinl x = Pinr y) (x : A) (y : B)
: ap (join.elim Pinl Pinr Pglue) (glue x y) = Pglue x y :=
begin
apply equiv.eq_of_fn_eq_fn_inv !(pathover_constant (glue x y)),
rewrite [▸*,-apdo_eq_pathover_of_eq_ap,↑join.elim],
apply join.rec_glue
end
protected definition elim_ap_inl {P : Type} (Pinl : A → P) (Pinr : B → P)
(Pglue : Π(x : A)(y : B), Pinl x = Pinr y) {a a' : A} (p : a = a')
: ap (join.elim Pinl Pinr Pglue) (ap inl p) = ap Pinl p :=
by cases p; reflexivity
protected definition hsquare {a a' : A} {b b' : B} (p : a = a') (q : b = b') :
square (ap inl p) (ap inr q) (glue a b) (glue a' b') :=
eq.rec_on p (eq.rec_on q hrfl)
protected definition vsquare {a a' : A} {b b' : B} (p : a = a') (q : b = b') :
square (glue a b) (glue a' b') (ap inl p) (ap inr q) :=
eq.rec_on p (eq.rec_on q vrfl)
end
end join
attribute join.inl join.inr [constructor]
attribute join.rec [recursor]
attribute join.elim [recursor 7]
attribute join.rec join.elim [unfold 7]
/- Diamonds in joins -/
namespace join
variables {A B : Type}
protected definition diamond (a a' : A) (b b' : B) :=
square (glue a b) (glue a' b')⁻¹ (glue a b') (glue a' b)⁻¹
protected definition hdiamond {a a' : A} (b b' : B) (p : a = a')
: join.diamond a a' b b' :=
begin
cases p, unfold join.diamond,
assert H : (glue a b' ⬝ (glue a b')⁻¹ ⬝ (glue a b)⁻¹⁻¹) = glue a b,
{ rewrite [con.right_inv,inv_inv,idp_con] },
exact H ▸ top_deg_square (glue a b') (glue a b')⁻¹ (glue a b)⁻¹,
end
protected definition vdiamond (a a' : A) {b b' : B} (q : b = b')
: join.diamond a a' b b' :=
begin
cases q, unfold join.diamond,
assert H : (glue a b ⬝ (glue a' b)⁻¹ ⬝ (glue a' b)⁻¹⁻¹) = glue a b,
{ rewrite [con.assoc,con.right_inv] },
exact H ▸ top_deg_square (glue a b) (glue a' b)⁻¹ (glue a' b)⁻¹
end
protected definition symm_diamond (a : A) (b : B)
: join.vdiamond a a idp = join.hdiamond b b idp :=
begin
unfold join.hdiamond, unfold join.vdiamond,
assert H : Π{X : Type} ⦃x y : X⦄ (p : x = y),
eq.rec (eq.rec (refl p) (symm (con.right_inv p⁻¹)))
(symm (con.assoc p p⁻¹ p⁻¹⁻¹)) ▸ top_deg_square p p⁻¹ p⁻¹
= eq.rec (eq.rec (eq.rec (refl p) (symm (idp_con p))) (symm (inv_inv p)))
(symm (con.right_inv p)) ▸ top_deg_square p p⁻¹ p⁻¹
:> square p p⁻¹ p p⁻¹,
{ intros X x y p, cases p, reflexivity },
apply H (glue a b)
end
end join
namespace join
variables {A₁ A₂ B₁ B₂ : Type}
protected definition functor [reducible]
(f : A₁ → A₂) (g : B₁ → B₂) : join A₁ B₁ → join A₂ B₂ :=
begin
intro x, induction x with a b a b,
{ exact inl (f a) }, { exact inr (g b) }, { apply glue }
end
protected definition ap_diamond (f : A₁ → A₂) (g : B₁ → B₂)
{a a' : A₁} {b b' : B₁}
: join.diamond a a' b b' → join.diamond (f a) (f a') (g b) (g b') :=
begin
unfold join.diamond, intro s,
note s' := aps (join.functor f g) s,
do 2 rewrite eq.ap_inv at s',
do 4 rewrite join.elim_glue at s', exact s'
end
protected definition equiv_closed
: A₁ ≃ A₂ → B₁ ≃ B₂ → join A₁ B₁ ≃ join A₂ B₂ :=
begin
intros H K,
fapply equiv.MK,
{ intro x, induction x with a b a b,
{ exact inl (to_fun H a) }, { exact inr (to_fun K b) },
{ apply glue } },
{ intro y, induction y with a b a b,
{ exact inl (to_inv H a) }, { exact inr (to_inv K b) },
{ apply glue } },
{ intro y, induction y with a b a b,
{ apply ap inl, apply to_right_inv },
{ apply ap inr, apply to_right_inv },
{ apply eq_pathover, rewrite ap_id,
rewrite (ap_compose' (join.elim _ _ _)),
do 2 krewrite join.elim_glue, apply join.hsquare } },
{ intro x, induction x with a b a b,
{ apply ap inl, apply to_left_inv },
{ apply ap inr, apply to_left_inv },
{ apply eq_pathover, rewrite ap_id,
rewrite (ap_compose' (join.elim _ _ _)),
do 2 krewrite join.elim_glue, apply join.hsquare } }
end
protected definition twist_diamond {A : Type} {a a' : A} (p : a = a')
: pathover (λx, join.diamond a' x a x)
(join.vdiamond a' a idp) p
(join.hdiamond a a' idp) :=
begin
cases p, apply pathover_idp_of_eq, apply join.symm_diamond
end
protected definition empty (A : Type) : join empty A ≃ A :=
begin
fapply equiv.MK,
{ intro x, induction x with z a z a,
{ induction z },
{ exact a },
{ induction z } },
{ intro a, exact inr a },
{ intro a, reflexivity },
{ intro x, induction x with z a z a,
{ induction z },
{ reflexivity },
{ induction z } }
end
protected definition bool (A : Type) : join bool A ≃ susp A :=
begin
fapply equiv.MK,
{ intro ba, induction ba with [b, a, b, a],
{ induction b, exact susp.south, exact susp.north },
{ exact susp.north },
{ induction b, esimp,
{ apply inverse, apply susp.merid, exact a },
{ reflexivity } } },
{ intro s, induction s with a,
{ exact inl tt },
{ exact inl ff },
{ exact (glue tt a) ⬝ (glue ff a)⁻¹ } },
{ intro s, induction s with a,
{ reflexivity },
{ reflexivity },
{ esimp, apply eq_pathover, rewrite ap_id,
rewrite (ap_compose' (join.elim _ _ _)),
rewrite [susp.elim_merid,ap_con,ap_inv],
krewrite [join.elim_glue,join.elim_glue],
esimp, rewrite [inv_inv,idp_con],
apply hdeg_square, reflexivity } },
{ intro ba, induction ba with [b, a, b, a], esimp,
{ induction b, do 2 reflexivity },
{ apply glue },
{ induction b,
{ esimp, apply eq_pathover, rewrite ap_id,
rewrite (ap_compose' (susp.elim _ _ _)),
krewrite join.elim_glue, rewrite ap_inv,
krewrite susp.elim_merid,
apply square_of_eq_top, apply inverse,
rewrite con.assoc, apply con.left_inv },
{ esimp, apply eq_pathover, rewrite ap_id,
rewrite (ap_compose' (susp.elim _ _ _)),
krewrite join.elim_glue, esimp,
apply square_of_eq_top,
rewrite [idp_con,con.right_inv] } } }
end
end join
namespace join
variables (A B C : Type)
protected definition is_contr [HA : is_contr A] :
is_contr (join A B) :=
begin
fapply is_contr.mk, exact inl (center A),
intro x, induction x with a b a b, apply ap inl, apply center_eq,
apply glue, apply pathover_of_tr_eq,
apply concat, apply transport_eq_Fr, esimp, rewrite ap_id,
generalize center_eq a, intro p, cases p, apply idp_con,
end
protected definition swap : join A B → join B A :=
begin
intro x, induction x with a b a b, exact inr a, exact inl b,
apply !glue⁻¹
end
protected definition swap_involutive (x : join A B) :
join.swap B A (join.swap A B x) = x :=
begin
induction x with a b a b, do 2 reflexivity,
apply eq_pathover, rewrite ap_id,
apply hdeg_square, esimp[join.swap],
apply concat, apply ap_compose' (join.elim _ _ _),
krewrite [join.elim_glue, ap_inv, join.elim_glue], apply inv_inv,
end
protected definition symm : join A B ≃ join B A :=
by fapply equiv.MK; do 2 apply join.swap; do 2 apply join.swap_involutive
end join
/- This proves that the join operator is associative.
The proof is more or less ported from Evan Cavallo's agda version:
https://github.com/HoTT/HoTT-Agda/blob/master/homotopy/JoinAssocCubical.agda -/
namespace join
section join_switch
private definition massage_sq' {A : Type} {a₀₀ a₂₀ a₀₂ a₂₂ : A}
{p₁₀ : a₀₀ = a₂₀} {p₁₂ : a₀₂ = a₂₂} {p₀₁ : a₀₀ = a₀₂} {p₂₁ : a₂₀ = a₂₂}
(sq : square p₁₀ p₁₂ p₀₁ p₂₁) : square p₁₀⁻¹ p₀₁⁻¹ (p₂₁ ⬝ p₁₂⁻¹) idp :=
by induction sq; exact ids
private definition massage_sq {A : Type} {a₀₀ a₂₀ a₀₂ : A}
{p₁₀ : a₀₀ = a₂₀} {p₁₂ : a₀₂ = a₂₀} {p₀₁ : a₀₀ = a₀₂}
(sq : square p₁₀ p₁₂ p₀₁ idp) : square p₁₀⁻¹ p₀₁⁻¹ p₁₂⁻¹ idp :=
!idp_con⁻¹ ⬝ph (massage_sq' sq)
private definition ap_square_massage {A B : Type} (f : A → B) {a₀₀ a₀₂ a₂₀ : A}
{p₀₁ : a₀₀ = a₀₂} {p₁₀ : a₀₀ = a₂₀} {p₁₁ : a₂₀ = a₀₂} (sq : square p₀₁ p₁₁ p₁₀ idp) :
cube (hdeg_square (ap_inv f p₁₁)) ids
(aps f (massage_sq sq)) (massage_sq (aps f sq))
(hdeg_square !ap_inv) (hdeg_square !ap_inv) :=
by apply rec_on_r sq; apply idc
private definition massage_cube' {A : Type} {a₀₀₀ a₂₀₀ a₀₂₀ a₂₂₀ a₀₀₂ a₂₀₂ a₀₂₂ a₂₂₂ : A}
{p₁₀₀ : a₀₀₀ = a₂₀₀} {p₀₁₀ : a₀₀₀ = a₀₂₀} {p₀₀₁ : a₀₀₀ = a₀₀₂} {p₁₂₀ : a₀₂₀ = a₂₂₀}
{p₂₁₀ : a₂₀₀ = a₂₂₀} {p₂₀₁ : a₂₀₀ = a₂₀₂} {p₁₀₂ : a₀₀₂ = a₂₀₂} {p₀₁₂ : a₀₀₂ = a₀₂₂}
{p₀₂₁ : a₀₂₀ = a₀₂₂} {p₁₂₂ : a₀₂₂ = a₂₂₂} {p₂₁₂ : a₂₀₂ = a₂₂₂} {p₂₂₁ : a₂₂₀ = a₂₂₂}
{s₁₁₀ : square p₀₁₀ p₂₁₀ p₁₀₀ p₁₂₀} {s₁₁₂ : square p₀₁₂ p₂₁₂ p₁₀₂ p₁₂₂}
{s₀₁₁ : square p₀₁₀ p₀₁₂ p₀₀₁ p₀₂₁} {s₂₁₁ : square p₂₁₀ p₂₁₂ p₂₀₁ p₂₂₁}
{s₁₀₁ : square p₁₀₀ p₁₀₂ p₀₀₁ p₂₀₁} {s₁₂₁ : square p₁₂₀ p₁₂₂ p₀₂₁ p₂₂₁}
(c : cube s₀₁₁ s₂₁₁ s₁₀₁ s₁₂₁ s₁₁₀ s₁₁₂) :
cube (s₂₁₁ ⬝v s₁₁₂⁻¹ᵛ) vrfl (massage_sq' s₁₀₁) (massage_sq' s₁₂₁) s₁₁₀⁻¹ᵛ s₀₁₁⁻¹ᵛ :=
by cases c; apply idc
private definition massage_cube {A : Type} {a₀₀₀ a₂₀₀ a₀₂₀ a₂₂₀ a₀₀₂ a₀₂₂ : A}
{p₁₀₀ : a₀₀₀ = a₂₀₀} {p₀₁₀ : a₀₀₀ = a₀₂₀} {p₀₀₁ : a₀₀₀ = a₀₀₂} {p₁₂₀ : a₀₂₀ = a₂₂₀}
{p₂₁₀ : a₂₀₀ = a₂₂₀} {p₁₀₂ : a₀₀₂ = a₂₀₀} {p₀₁₂ : a₀₀₂ = a₀₂₂}
{p₀₂₁ : a₀₂₀ = a₀₂₂} {p₁₂₂ : a₀₂₂ = a₂₂₀}
{s₁₁₀ : square p₀₁₀ _ _ _} {s₁₁₂ : square p₀₁₂ p₂₁₀ p₁₀₂ p₁₂₂}
{s₀₁₁ : square p₀₁₀ p₀₁₂ p₀₀₁ p₀₂₁} --{s₂₁₁ : square p₂₁₀ p₂₁₀ idp idp}
{s₁₀₁ : square p₁₀₀ p₁₀₂ p₀₀₁ idp} {s₁₂₁ : square p₁₂₀ p₁₂₂ p₀₂₁ idp}
(c : cube s₀₁₁ vrfl s₁₀₁ s₁₂₁ s₁₁₀ s₁₁₂) :
cube s₁₁₂⁻¹ᵛ vrfl (massage_sq s₁₀₁) (massage_sq s₁₂₁) s₁₁₀⁻¹ᵛ s₀₁₁⁻¹ᵛ :=
begin
cases p₁₀₀, cases p₁₀₂, cases p₁₂₂, note c' := massage_cube' c, esimp[massage_sq],
krewrite vdeg_v_eq_ph_pv_hp at c', exact c',
end
private definition massage_massage {A : Type} {a₀₀ a₀₂ a₂₀ : A}
{p₀₁ : a₀₀ = a₀₂} {p₁₀ : a₀₀ = a₂₀} {p₁₁ : a₂₀ = a₀₂} (sq : square p₀₁ p₁₁ p₁₀ idp) :
cube (hdeg_square !inv_inv) ids (massage_sq (massage_sq sq))
sq (hdeg_square !inv_inv) (hdeg_square !inv_inv) :=
by apply rec_on_r sq; apply idc
private definition square_Flr_ap_idp_cube {A B : Type} {b : B} {f : A → B}
{p₁ p₂ : Π a, f a = b} (α : Π a, p₁ a = p₂ a) {a₁ a₂ : A} (q : a₁ = a₂) :
cube hrfl hrfl (square_Flr_ap_idp p₁ q) (square_Flr_ap_idp p₂ q)
(hdeg_square (α _)) (hdeg_square (α _)) :=
by cases q; esimp[square_Flr_ap_idp]; apply deg3_cube; esimp
variables {A B C : Type}
definition switch_left [reducible] : join A B → join (join C B) A :=
begin
intro x, induction x with a b a b, exact inr a, exact inl (inr b), apply !glue⁻¹,
end
private definition switch_coh_fill_square (a : A) (b : B) (c : C) :=
square (glue (inl c) a)⁻¹ (ap inl (glue c b))⁻¹ (ap switch_left (glue a b)) idp
private definition switch_coh_fill_cube (a : A) (b : B) (c : C)
(sq : switch_coh_fill_square a b c) :=
cube (hdeg_square !join.elim_glue) ids
sq (massage_sq !square_Flr_ap_idp)
hrfl hrfl
private definition switch_coh_fill_type (a : A) (b : B) (c : C) :=
Σ sq : switch_coh_fill_square a b c, switch_coh_fill_cube a b c sq
private definition switch_coh_fill (a : A) (b : B) (c : C)
: switch_coh_fill_type a b c :=
by esimp; apply cube_fill101
private definition switch_coh (ab : join A B) (c : C) : switch_left ab = inl (inl c) :=
begin
induction ab with a b a b, apply !glue⁻¹, apply (ap inl !glue)⁻¹,
apply eq_pathover, refine _ ⬝hp !ap_constant⁻¹,
apply !switch_coh_fill.1,
end
protected definition switch [reducible] : join (join A B) C → join (join C B) A :=
begin
intro x, induction x with ab c ab c, exact switch_left ab, exact inl (inl c),
exact switch_coh ab c,
end
private definition switch_inv_left_square (a : A) (b : B) :
square idp idp (ap (!(@join.switch C) ∘ switch_left) (glue a b)) (ap inl (glue a b)) :=
begin
refine hdeg_square !ap_compose ⬝h _,
refine aps join.switch (hdeg_square !join.elim_glue) ⬝h _, esimp,
refine hdeg_square !(ap_inv join.switch) ⬝h _,
refine hrfl⁻¹ʰ⁻¹ᵛ ⬝h _, esimp[join.switch,switch_left,switch_coh],
refine (hdeg_square !join.elim_glue)⁻¹ᵛ ⬝h _, esimp,
refine hrfl⁻¹ᵛ ⬝h _, apply hdeg_square !inv_inv,
end
private definition switch_inv_coh_left (c : C) (a : A) :
square idp idp (ap !(@join.switch C B) (switch_coh (inl a) c)) (glue (inl a) c) :=
begin
refine hrfl ⬝h _,
refine aps join.switch hrfl ⬝h _, esimp[switch_coh],
refine hdeg_square !ap_inv ⬝h _,
refine hrfl⁻¹ʰ⁻¹ᵛ ⬝h _, esimp[join.switch,switch_left],
refine (hdeg_square !join.elim_glue)⁻¹ᵛ ⬝h _,
refine hrfl⁻¹ᵛ ⬝h _, apply hdeg_square !inv_inv,
end
private definition switch_inv_coh_right (c : C) (b : B) :
square idp idp (ap !(@join.switch _ _ A) (switch_coh (inr b) c)) (glue (inr b) c) :=
begin
refine hrfl ⬝h _,
refine aps join.switch hrfl ⬝h _, esimp[switch_coh],
refine hdeg_square !ap_inv ⬝h _,
refine (hdeg_square !ap_compose)⁻¹ʰ⁻¹ᵛ ⬝h _,
refine hrfl⁻¹ᵛ ⬝h _, esimp[join.switch,switch_left],
refine (hdeg_square !join.elim_glue)⁻¹ᵛ ⬝h _, apply hdeg_square !inv_inv,
end
private definition switch_inv_left (ab : join A B) :
!(@join.switch C) (join.switch (inl ab)) = inl ab :=
begin
induction ab with a b a b, do 2 reflexivity,
apply eq_pathover, exact !switch_inv_left_square,
end
section
variables (a : A) (b : B) (c : C)
private definition switch_inv_cube_aux1 {A B C : Type} {b : B} {f : A → B} (h : B → C)
(g : Π a, f a = b) {x y : A} (p : x = y) :
cube (hdeg_square (ap_compose h f p)) ids (square_Flr_ap_idp (λ a, ap h (g a)) p)
(aps h (square_Flr_ap_idp _ _)) hrfl hrfl :=
by cases p; esimp[square_Flr_ap_idp]; apply deg2_cube; cases (g x); esimp
private definition switch_inv_cube_aux2 {A B : Type} {b : B} {f : A → B}
(g : Π a, f a = b) {x y : A} (p : x = y) {sq : square (g x) (g y) (ap f p) idp}
(q : apdo g p = eq_pathover (sq ⬝hp !ap_constant⁻¹)) : square_Flr_ap_idp _ _ = sq :=
begin
cases p, esimp at *, apply concat, apply inverse, apply vdeg_square_idp,
apply concat, apply ap vdeg_square, exact ap eq_of_pathover_idp q,
krewrite (is_equiv.right_inv (equiv.to_fun !pathover_idp)),
exact is_equiv.left_inv (equiv.to_fun (vdeg_square_equiv _ _)) sq,
end
private definition switch_inv_cube (a : A) (b : B) (c : C) :
cube (switch_inv_left_square a b) ids (square_Flr_ap_idp _ _)
(square_Flr_ap_idp _ _) (switch_inv_coh_left c a) (switch_inv_coh_right c b) :=
begin
esimp [switch_inv_coh_left, switch_inv_coh_right, switch_inv_left_square],
apply cube_concat2, apply switch_inv_cube_aux1,
apply cube_concat2, apply cube_transport101, apply inverse,
apply ap (λ x, aps join.switch x), apply switch_inv_cube_aux2, apply join.rec_glue,
apply apc, apply (switch_coh_fill a b c).2,
apply cube_concat2, esimp, apply ap_square_massage,
apply cube_concat2, apply massage_cube, apply cube_inverse2, apply switch_inv_cube_aux1,
apply cube_concat2, apply massage_cube, apply square_Flr_ap_idp_cube,
apply cube_concat2, apply massage_cube, apply cube_transport101,
apply inverse, apply switch_inv_cube_aux2,
esimp[switch_coh], apply join.rec_glue, apply (switch_coh_fill c b a).2,
apply massage_massage,
end
end
private definition pathover_of_triangle_cube {A B : Type} {b₀ b₁ : A → B}
{b : B} {p₀₁ : Π a, b₀ a = b₁ a} {p₀ : Π a, b₀ a = b} {p₁ : Π a, b₁ a = b}
{x y : A} {q : x = y} {sqx : square (p₀₁ x) idp (p₀ x) (p₁ x)}
{sqy : square (p₀₁ y) idp (p₀ y) (p₁ y)}
(c : cube (natural_square_tr _ _) ids (square_Flr_ap_idp p₀ q) (square_Flr_ap_idp p₁ q)
sqx sqy) :
sqx =[q] sqy :=
by cases q; apply pathover_of_eq_tr; apply eq_of_deg12_cube; exact c
private definition pathover_of_ap_ap_square {A : Type} {x y : A} {p : x = y}
(g : B → A) (f : A → B) {u : g (f x) = x} {v : g (f y) = y}
(sq : square (ap g (ap f p)) p u v) : u =[p] v :=
by cases p; apply eq_pathover; apply transpose; exact sq
private definition natural_square_tr_beta {A B : Type} {f₁ f₂ : A → B}
(p : Π a, f₁ a = f₂ a) {x y : A} (q : x = y) {sq : square (p x) (p y) (ap f₁ q) (ap f₂ q)}
(e : apdo p q = eq_pathover sq) :
natural_square_tr p q = sq :=
begin
cases q, esimp at *, apply concat, apply inverse, apply vdeg_square_idp,
apply concat, apply ap vdeg_square, apply ap eq_of_pathover_idp e,
krewrite (is_equiv.right_inv (equiv.to_fun !pathover_idp)),
exact is_equiv.left_inv (equiv.to_fun (vdeg_square_equiv _ _)) sq,
end
private definition switch_inv_coh (c : C) (k : join A B) :
square (switch_inv_left k) idp (ap join.switch (switch_coh k c)) (glue k c) :=
begin
induction k with a b a b, apply switch_inv_coh_left, apply switch_inv_coh_right,
refine pathover_of_triangle_cube _,
esimp, apply cube_transport011,
apply inverse, rotate 1, apply switch_inv_cube,
apply natural_square_tr_beta, apply join.rec_glue,
end
protected definition switch_involutive (x : join (join A B) C) :
join.switch (join.switch x) = x :=
begin
induction x with ab c ab c, apply switch_inv_left, reflexivity,
apply pathover_of_ap_ap_square join.switch join.switch,
krewrite join.elim_glue, esimp,
apply transpose, exact !switch_inv_coh,
end
end join_switch
protected definition switch_equiv (A B C : Type) : join (join A B) C ≃ join (join C B) A :=
by apply equiv.MK; do 2 apply join.switch_involutive
protected definition assoc (A B C : Type) : join (join A B) C ≃ join A (join B C) :=
calc join (join A B) C ≃ join (join C B) A : join.switch_equiv
... ≃ join A (join C B) : join.symm
... ≃ join A (join B C) : join.equiv_closed erfl (join.symm C B)
protected definition ap_assoc_inv_glue_inl {A B : Type} (C : Type) (a : A) (b : B)
: ap (to_inv (join.assoc A B C)) (glue a (inl b)) = ap inl (glue a b) :=
begin
unfold join.assoc, unfold equiv.trans, rewrite ap_compose, krewrite join.elim_glue,
rewrite ap_compose, krewrite join.elim_glue, rewrite ap_inv, krewrite join.elim_glue,
unfold switch_coh, unfold join.symm, unfold join.swap, esimp, rewrite eq.inv_inv
end
protected definition ap_assoc_inv_glue_inr {A C : Type} (B : Type) (a : A) (c : C)
: ap (to_inv (join.assoc A B C)) (glue a (inr c)) = glue (inl a) c :=
begin
unfold join.assoc, unfold equiv.trans, rewrite ap_compose, krewrite join.elim_glue,
rewrite ap_compose, krewrite join.elim_glue, rewrite ap_inv, krewrite join.elim_glue,
unfold switch_coh, unfold join.symm, unfold join.swap, esimp, rewrite eq.inv_inv
end
end join
namespace join
open sphere sphere_index sphere.ops
protected definition spheres (n m : ℕ₋₁) : join (S n) (S m) ≃ S (n+1+m) :=
begin
apply equiv.trans (join.symm (S n) (S m)),
induction m with m IH,
{ exact join.empty (S n) },
{ calc join (S m.+1) (S n)
≃ join (join bool (S m)) (S n)
: join.equiv_closed (equiv.symm (join.bool (S m))) erfl
... ≃ join bool (join (S m) (S n))
: join.assoc
... ≃ join bool (S (n+1+m))
: join.equiv_closed erfl IH
... ≃ sphere (n+1+m.+1)
: join.bool (S (n+1+m)) }
end
end join