lean2/library/data/list/basic.lean

804 lines
29 KiB
Text
Raw Normal View History

/-
Copyright (c) 2014 Parikshit Khanna. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Module: data.list.basic
Authors: Parikshit Khanna, Jeremy Avigad, Leonardo de Moura
Basic properties of lists.
-/
import logic tools.helper_tactics data.nat.basic algebra.function
open eq.ops helper_tactics nat prod function
inductive list (T : Type) : Type :=
| nil {} : list T
| cons : T → list T → list T
namespace list
notation h :: t := cons h t
notation `[` l:(foldr `,` (h t, cons h t) nil `]`) := l
variable {T : Type}
/- append -/
definition append : list T → list T → list T
| [] l := l
| (h :: s) t := h :: (append s t)
notation l₁ ++ l₂ := append l₁ l₂
theorem append_nil_left (t : list T) : [] ++ t = t
theorem append_cons (x : T) (s t : list T) : (x::s) ++ t = x::(s ++ t)
theorem append_nil_right : ∀ (t : list T), t ++ [] = t
| [] := rfl
| (a :: l) := calc
(a :: l) ++ [] = a :: (l ++ []) : rfl
... = a :: l : append_nil_right l
theorem append.assoc : ∀ (s t u : list T), s ++ t ++ u = s ++ (t ++ u)
| [] t u := rfl
| (a :: l) t u :=
show a :: (l ++ t ++ u) = (a :: l) ++ (t ++ u),
by rewrite (append.assoc l t u)
/- length -/
definition length : list T → nat
| [] := 0
| (a :: l) := length l + 1
theorem length_nil : length (@nil T) = 0
theorem length_cons (x : T) (t : list T) : length (x::t) = length t + 1
theorem length_append : ∀ (s t : list T), length (s ++ t) = length s + length t
| [] t := calc
length ([] ++ t) = length t : rfl
... = length [] + length t : zero_add
| (a :: s) t := calc
length (a :: s ++ t) = length (s ++ t) + 1 : rfl
... = length s + length t + 1 : length_append
... = (length s + 1) + length t : add.succ_left
... = length (a :: s) + length t : rfl
-- add_rewrite length_nil length_cons
/- concat -/
definition concat : Π (x : T), list T → list T
| a [] := [a]
| a (b :: l) := b :: concat a l
theorem concat_nil (x : T) : concat x [] = [x]
theorem concat_cons (x y : T) (l : list T) : concat x (y::l) = y::(concat x l)
theorem concat_eq_append (a : T) : ∀ (l : list T), concat a l = l ++ [a]
| [] := rfl
| (b :: l) :=
show b :: (concat a l) = (b :: l) ++ (a :: []),
by rewrite concat_eq_append
-- add_rewrite append_nil append_cons
/- reverse -/
definition reverse : list T → list T
| [] := []
| (a :: l) := concat a (reverse l)
theorem reverse_nil : reverse (@nil T) = []
theorem reverse_cons (x : T) (l : list T) : reverse (x::l) = concat x (reverse l)
theorem reverse_singleton (x : T) : reverse [x] = [x]
theorem reverse_append : ∀ (s t : list T), reverse (s ++ t) = (reverse t) ++ (reverse s)
| [] t2 := calc
reverse ([] ++ t2) = reverse t2 : rfl
... = (reverse t2) ++ [] : append_nil_right
... = (reverse t2) ++ (reverse []) : by rewrite reverse_nil
| (a2 :: s2) t2 := calc
reverse ((a2 :: s2) ++ t2) = concat a2 (reverse (s2 ++ t2)) : rfl
... = concat a2 (reverse t2 ++ reverse s2) : reverse_append
... = (reverse t2 ++ reverse s2) ++ [a2] : concat_eq_append
... = reverse t2 ++ (reverse s2 ++ [a2]) : append.assoc
... = reverse t2 ++ concat a2 (reverse s2) : concat_eq_append
... = reverse t2 ++ reverse (a2 :: s2) : rfl
theorem reverse_reverse : ∀ (l : list T), reverse (reverse l) = l
| [] := rfl
| (a :: l) := calc
reverse (reverse (a :: l)) = reverse (concat a (reverse l)) : rfl
... = reverse (reverse l ++ [a]) : concat_eq_append
... = reverse [a] ++ reverse (reverse l) : reverse_append
... = reverse [a] ++ l : reverse_reverse
... = a :: l : rfl
theorem concat_eq_reverse_cons (x : T) (l : list T) : concat x l = reverse (x :: reverse l) :=
calc
concat x l = concat x (reverse (reverse l)) : reverse_reverse
... = reverse (x :: reverse l) : rfl
/- head and tail -/
definition head [h : inhabited T] : list T → T
| [] := arbitrary T
| (a :: l) := a
theorem head_cons [h : inhabited T] (a : T) (l : list T) : head (a::l) = a
theorem head_append [h : inhabited T] (t : list T) : ∀ {s : list T}, s ≠ [] → head (s ++ t) = head s
| [] H := absurd rfl H
| (a :: s) H :=
show head (a :: (s ++ t)) = head (a :: s),
by rewrite head_cons
definition tail : list T → list T
| [] := []
| (a :: l) := l
theorem tail_nil : tail (@nil T) = []
theorem tail_cons (a : T) (l : list T) : tail (a::l) = l
theorem cons_head_tail [h : inhabited T] {l : list T} : l ≠ [] → (head l)::(tail l) = l :=
list.cases_on l
(assume H : [] ≠ [], absurd rfl H)
(take x l, assume H : x::l ≠ [], rfl)
/- list membership -/
definition mem : T → list T → Prop
| a [] := false
| a (b :: l) := a = b mem a l
notation e ∈ s := mem e s
notation e ∉ s := ¬ e ∈ s
theorem mem_nil (x : T) : x ∈ [] ↔ false :=
iff.rfl
theorem not_mem_nil (x : T) : x ∉ [] :=
iff.mp !mem_nil
2015-03-29 13:59:36 -07:00
theorem mem_cons (x : T) (l : list T) : x ∈ x :: l :=
or.inl rfl
theorem mem_singleton {x a : T} : x ∈ [a] → x = a :=
assume h : x ∈ [a], or.elim h
(λ xeqa : x = a, xeqa)
(λ xinn : x ∈ [], absurd xinn !not_mem_nil)
theorem mem_cons_of_mem (x : T) {y : T} {l : list T} : x ∈ l → x ∈ y :: l :=
assume H, or.inr H
2015-03-29 13:59:36 -07:00
theorem mem_cons_iff (x y : T) (l : list T) : x ∈ y::l ↔ (x = y x ∈ l) :=
iff.rfl
theorem mem_or_mem_of_mem_append {x : T} {s t : list T} : x ∈ s ++ t → x ∈ s x ∈ t :=
list.induction_on s or.inr
(take y s,
assume IH : x ∈ s ++ t → x ∈ s x ∈ t,
assume H1 : x ∈ y::s ++ t,
have H2 : x = y x ∈ s ++ t, from H1,
have H3 : x = y x ∈ s x ∈ t, from or_of_or_of_imp_right H2 IH,
iff.elim_right or.assoc H3)
theorem mem_append_of_mem_or_mem {x : T} {s t : list T} : x ∈ s x ∈ t → x ∈ s ++ t :=
list.induction_on s
(take H, or.elim H false.elim (assume H, H))
(take y s,
assume IH : x ∈ s x ∈ t → x ∈ s ++ t,
assume H : x ∈ y::s x ∈ t,
or.elim H
(assume H1,
or.elim H1
(take H2 : x = y, or.inl H2)
(take H2 : x ∈ s, or.inr (IH (or.inl H2))))
(assume H1 : x ∈ t, or.inr (IH (or.inr H1))))
theorem mem_append_iff (x : T) (s t : list T) : x ∈ s ++ t ↔ x ∈ s x ∈ t :=
iff.intro mem_or_mem_of_mem_append mem_append_of_mem_or_mem
theorem not_mem_of_not_mem_append_left {x : T} {s t : list T} : x ∉ s++t → x ∉ s :=
λ nxinst xins, absurd (mem_append_of_mem_or_mem (or.inl xins)) nxinst
theorem not_mem_of_not_mem_append_right {x : T} {s t : list T} : x ∉ s++t → x ∉ t :=
λ nxinst xint, absurd (mem_append_of_mem_or_mem (or.inr xint)) nxinst
local attribute mem [reducible]
local attribute append [reducible]
theorem mem_split {x : T} {l : list T} : x ∈ l → ∃s t : list T, l = s ++ (x::t) :=
list.induction_on l
(take H : x ∈ [], false.elim (iff.elim_left !mem_nil H))
(take y l,
assume IH : x ∈ l → ∃s t : list T, l = s ++ (x::t),
assume H : x ∈ y::l,
or.elim H
(assume H1 : x = y,
exists.intro [] (!exists.intro (H1 ▸ rfl)))
(assume H1 : x ∈ l,
obtain s (H2 : ∃t : list T, l = s ++ (x::t)), from IH H1,
obtain t (H3 : l = s ++ (x::t)), from H2,
have H4 : y :: l = (y::s) ++ (x::t),
from H3 ▸ rfl,
!exists.intro (!exists.intro H4)))
theorem mem_append_left {a : T} {l₁ : list T} (l₂ : list T) : a ∈ l₁ → a ∈ l₁ ++ l₂ :=
assume ainl₁, mem_append_of_mem_or_mem (or.inl ainl₁)
theorem mem_append_right {a : T} (l₁ : list T) {l₂ : list T} : a ∈ l₂ → a ∈ l₁ ++ l₂ :=
assume ainl₂, mem_append_of_mem_or_mem (or.inr ainl₂)
definition decidable_mem [instance] [H : decidable_eq T] (x : T) (l : list T) : decidable (x ∈ l) :=
list.rec_on l
(decidable.inr (not_of_iff_false !mem_nil))
(take (h : T) (l : list T) (iH : decidable (x ∈ l)),
show decidable (x ∈ h::l), from
decidable.rec_on iH
(assume Hp : x ∈ l,
decidable.rec_on (H x h)
(assume Heq : x = h,
decidable.inl (or.inl Heq))
(assume Hne : x ≠ h,
decidable.inl (or.inr Hp)))
(assume Hn : ¬x ∈ l,
decidable.rec_on (H x h)
(assume Heq : x = h,
decidable.inl (or.inl Heq))
(assume Hne : x ≠ h,
have H1 : ¬(x = h x ∈ l), from
assume H2 : x = h x ∈ l, or.elim H2
(assume Heq, absurd Heq Hne)
(assume Hp, absurd Hp Hn),
have H2 : ¬x ∈ h::l, from
2015-03-29 13:59:36 -07:00
iff.elim_right (not_iff_not_of_iff !mem_cons_iff) H1,
decidable.inr H2)))
theorem mem_of_ne_of_mem {x y : T} {l : list T} (H₁ : x ≠ y) (H₂ : x ∈ y :: l) : x ∈ l :=
or.elim H₂ (λe, absurd e H₁) (λr, r)
theorem not_eq_of_not_mem {a b : T} {l : list T} : a ∉ b::l → a ≠ b :=
assume nin aeqb, absurd (or.inl aeqb) nin
theorem not_mem_of_not_mem {a b : T} {l : list T} : a ∉ b::l → a ∉ l :=
assume nin nainl, absurd (or.inr nainl) nin
definition sublist (l₁ l₂ : list T) := ∀ ⦃a : T⦄, a ∈ l₁ → a ∈ l₂
infix `⊆`:50 := sublist
lemma nil_sub (l : list T) : [] ⊆ l :=
λ b i, false.elim (iff.mp (mem_nil b) i)
lemma sub.refl (l : list T) : l ⊆ l :=
λ b i, i
lemma sub.trans {l₁ l₂ l₃ : list T} (H₁ : l₁ ⊆ l₂) (H₂ : l₂ ⊆ l₃) : l₁ ⊆ l₃ :=
λ b i, H₂ (H₁ i)
lemma sub_cons (a : T) (l : list T) : l ⊆ a::l :=
λ b i, or.inr i
lemma cons_sub_cons {l₁ l₂ : list T} (a : T) (s : l₁ ⊆ l₂) : (a::l₁) ⊆ (a::l₂) :=
λ b Hin, or.elim Hin
(λ e : b = a, or.inl e)
(λ i : b ∈ l₁, or.inr (s i))
lemma sub_append_left (l₁ l₂ : list T) : l₁ ⊆ l₁++l₂ :=
λ b i, iff.mp' (mem_append_iff b l₁ l₂) (or.inl i)
lemma sub_append_right (l₁ l₂ : list T) : l₂ ⊆ l₁++l₂ :=
λ b i, iff.mp' (mem_append_iff b l₁ l₂) (or.inr i)
lemma sub_cons_of_sub (a : T) {l₁ l₂ : list T} : l₁ ⊆ l₂ → l₁ ⊆ (a::l₂) :=
λ (s : l₁ ⊆ l₂) (x : T) (i : x ∈ l₁), or.inr (s i)
lemma sub_app_of_sub_left (l l₁ l₂ : list T) : l ⊆ l₁ → l ⊆ l₁++l₂ :=
λ (s : l ⊆ l₁) (x : T) (xinl : x ∈ l),
have xinl₁ : x ∈ l₁, from s xinl,
mem_append_of_mem_or_mem (or.inl xinl₁)
lemma sub_app_of_sub_right (l l₁ l₂ : list T) : l ⊆ l₂ → l ⊆ l₁++l₂ :=
λ (s : l ⊆ l₂) (x : T) (xinl : x ∈ l),
have xinl₁ : x ∈ l₂, from s xinl,
mem_append_of_mem_or_mem (or.inr xinl₁)
lemma cons_sub_of_sub_of_mem {a : T} {l m : list T} : a ∈ m → l ⊆ m → a::l ⊆ m :=
λ (ainm : a ∈ m) (lsubm : l ⊆ m) (x : T) (xinal : x ∈ a::l), or.elim xinal
(assume xeqa : x = a, eq.rec_on (eq.symm xeqa) ainm)
(assume xinl : x ∈ l, lsubm xinl)
lemma app_sub_of_sub_of_sub {l₁ l₂ l : list T} : l₁ ⊆ l → l₂ ⊆ l → l₁++l₂ ⊆ l :=
λ (l₁subl : l₁ ⊆ l) (l₂subl : l₂ ⊆ l) (x : T) (xinl₁l₂ : x ∈ l₁++l₂),
or.elim (mem_or_mem_of_mem_append xinl₁l₂)
(λ xinl₁ : x ∈ l₁, l₁subl xinl₁)
(λ xinl₂ : x ∈ l₂, l₂subl xinl₂)
/- find -/
section
variable [H : decidable_eq T]
include H
definition find : T → list T → nat
| a [] := 0
| a (b :: l) := if a = b then 0 else succ (find a l)
theorem find_nil (x : T) : find x [] = 0
theorem find_cons (x y : T) (l : list T) : find x (y::l) = if x = y then 0 else succ (find x l)
theorem find.not_mem {l : list T} {x : T} : ¬x ∈ l → find x l = length l :=
list.rec_on l
(assume P₁ : ¬x ∈ [], _)
(take y l,
assume iH : ¬x ∈ l → find x l = length l,
assume P₁ : ¬x ∈ y::l,
2015-03-29 13:59:36 -07:00
have P₂ : ¬(x = y x ∈ l), from iff.elim_right (not_iff_not_of_iff !mem_cons_iff) P₁,
have P₃ : ¬x = y ∧ ¬x ∈ l, from (iff.elim_left not_or_iff_not_and_not P₂),
calc
find x (y::l) = if x = y then 0 else succ (find x l) : !find_cons
... = succ (find x l) : if_neg (and.elim_left P₃)
... = succ (length l) : {iH (and.elim_right P₃)}
... = length (y::l) : !length_cons⁻¹)
end
/- nth element -/
definition nth [h : inhabited T] : list T → nat → T
| [] n := arbitrary T
| (a :: l) 0 := a
| (a :: l) (n+1) := nth l n
theorem nth_zero [h : inhabited T] (a : T) (l : list T) : nth (a :: l) 0 = a
theorem nth_succ [h : inhabited T] (a : T) (l : list T) (n : nat) : nth (a::l) (n+1) = nth l n
open decidable
definition has_decidable_eq {A : Type} [H : decidable_eq A] : ∀ l₁ l₂ : list A, decidable (l₁ = l₂)
| [] [] := inl rfl
| [] (b::l₂) := inr (λ H, list.no_confusion H)
| (a::l₁) [] := inr (λ H, list.no_confusion H)
| (a::l₁) (b::l₂) :=
match H a b with
| inl Hab :=
match has_decidable_eq l₁ l₂ with
| inl He := inl (eq.rec_on Hab (eq.rec_on He rfl))
| inr Hn := inr (λ H, list.no_confusion H (λ Hab Ht, absurd Ht Hn))
end
| inr Hnab := inr (λ H, list.no_confusion H (λ Hab Ht, absurd Hab Hnab))
end
section combinators
variables {A B C : Type}
definition map (f : A → B) : list A → list B
| [] := []
| (a :: l) := f a :: map l
theorem map_nil (f : A → B) : map f [] = []
theorem map_cons (f : A → B) (a : A) (l : list A) : map f (a :: l) = f a :: map f l
theorem map_id : ∀ l : list A, map id l = l
| [] := rfl
| (x::xs) := begin rewrite [map_cons, map_id] end
theorem map_map (g : B → C) (f : A → B) : ∀ l, map g (map f l) = map (g ∘ f) l
| [] := rfl
| (a :: l) :=
show (g ∘ f) a :: map g (map f l) = map (g ∘ f) (a :: l),
by rewrite (map_map l)
theorem len_map (f : A → B) : ∀ l : list A, length (map f l) = length l
| [] := rfl
| (a :: l) :=
show length (map f l) + 1 = length l + 1,
by rewrite (len_map l)
theorem mem_map {A B : Type} (f : A → B) : ∀ {a l}, a ∈ l → f a ∈ map f l
| a [] i := absurd i !not_mem_nil
| a (x::xs) i := or.elim i
(λ aeqx : a = x, by rewrite [aeqx, map_cons]; apply mem_cons)
(λ ainxs : a ∈ xs, or.inr (mem_map ainxs))
definition map₂ (f : A → B → C) : list A → list B → list C
| [] _ := []
| _ [] := []
| (x::xs) (y::ys) := f x y :: map₂ xs ys
definition foldl (f : A → B → A) : A → list B → A
| a [] := a
| a (b :: l) := foldl (f a b) l
definition foldr (f : A → B → B) : B → list A → B
| b [] := b
| b (a :: l) := f a (foldr b l)
section foldl_eq_foldr
-- foldl and foldr coincide when f is commutative and associative
parameters {α : Type} {f : ααα}
hypothesis (Hcomm : ∀ a b, f a b = f b a)
hypothesis (Hassoc : ∀ a b c, f a (f b c) = f (f a b) c)
include Hcomm Hassoc
theorem foldl_eq_of_comm_of_assoc : ∀ a b l, foldl f a (b::l) = f b (foldl f a l)
| a b nil := Hcomm a b
| a b (c::l) :=
begin
change (foldl f (f (f a b) c) l = f b (foldl f (f a c) l)),
rewrite -foldl_eq_of_comm_of_assoc,
change (foldl f (f (f a b) c) l = foldl f (f (f a c) b) l),
have H₁ : f (f a b) c = f (f a c) b, by rewrite [-Hassoc, -Hassoc, Hcomm b c],
rewrite H₁
end
theorem foldl_eq_foldr : ∀ a l, foldl f a l = foldr f a l
| a nil := rfl
| a (b :: l) :=
begin
rewrite foldl_eq_of_comm_of_assoc,
esimp,
change (f b (foldl f a l) = f b (foldr f a l)),
rewrite foldl_eq_foldr
end
end foldl_eq_foldr
definition all (p : A → Prop) (l : list A) : Prop :=
foldr (λ a r, p a ∧ r) true l
definition any (p : A → Prop) (l : list A) : Prop :=
foldr (λ a r, p a r) false l
definition decidable_all (p : A → Prop) [H : decidable_pred p] : ∀ l, decidable (all p l)
| [] := decidable_true
| (a :: l) :=
match H a with
| inl Hp₁ :=
match decidable_all l with
| inl Hp₂ := inl (and.intro Hp₁ Hp₂)
| inr Hn₂ := inr (not_and_of_not_right (p a) Hn₂)
end
| inr Hn := inr (not_and_of_not_left (all p l) Hn)
end
definition decidable_any (p : A → Prop) [H : decidable_pred p] : ∀ l, decidable (any p l)
| [] := decidable_false
| (a :: l) :=
match H a with
| inl Hp := inl (or.inl Hp)
| inr Hn₁ :=
match decidable_any l with
| inl Hp₂ := inl (or.inr Hp₂)
| inr Hn₂ := inr (not_or Hn₁ Hn₂)
end
end
definition zip (l₁ : list A) (l₂ : list B) : list (A × B) :=
map₂ (λ a b, (a, b)) l₁ l₂
definition unzip : list (A × B) → list A × list B
| [] := ([], [])
| ((a, b) :: l) :=
match unzip l with
| (la, lb) := (a :: la, b :: lb)
end
theorem unzip_nil : unzip (@nil (A × B)) = ([], [])
theorem unzip_cons (a : A) (b : B) (l : list (A × B)) :
unzip ((a, b) :: l) = match unzip l with (la, lb) := (a :: la, b :: lb) end :=
rfl
theorem zip_unzip : ∀ (l : list (A × B)), zip (pr₁ (unzip l)) (pr₂ (unzip l)) = l
| [] := rfl
| ((a, b) :: l) :=
begin
rewrite unzip_cons,
have r : zip (pr₁ (unzip l)) (pr₂ (unzip l)) = l, from zip_unzip l,
revert r,
apply (prod.cases_on (unzip l)),
intros [la, lb, r],
rewrite -r
end
end combinators
/- flat -/
section
variable {A : Type}
definition flat (l : list (list A)) : list A :=
foldl append nil l
end
/- quasiequal a l l' means that l' is exactly l, with a added
once somewhere -/
section qeq
variable {A : Type}
inductive qeq (a : A) : list A → list A → Prop :=
| qhead : ∀ l, qeq a l (a::l)
| qcons : ∀ (b : A) {l l' : list A}, qeq a l l' → qeq a (b::l) (b::l')
open qeq
notation l' `≈`:50 a `|` l:50 := qeq a l l'
lemma qeq_app : ∀ (l₁ : list A) (a : A) (l₂ : list A), l₁++(a::l₂) ≈ a|l₁++l₂
| [] a l₂ := qhead a l₂
| (x::xs) a l₂ := qcons x (qeq_app xs a l₂)
lemma mem_head_of_qeq {a : A} {l₁ l₂ : list A} : l₁≈a|l₂ → a ∈ l₁ :=
take q, qeq.induction_on q
(λ l, !mem_cons)
(λ b l l' q r, or.inr r)
lemma mem_tail_of_qeq {a : A} {l₁ l₂ : list A} : l₁≈a|l₂ → ∀ x, x ∈ l₂ → x ∈ l₁ :=
take q, qeq.induction_on q
(λ l x i, or.inr i)
(λ b l l' q r x xinbl, or.elim xinbl
(λ xeqb : x = b, xeqb ▸ mem_cons x l')
(λ xinl : x ∈ l, or.inr (r x xinl)))
lemma mem_cons_of_qeq {a : A} {l₁ l₂ : list A} : l₁≈a|l₂ → ∀ x, x ∈ l₁ → x ∈ a::l₂ :=
take q, qeq.induction_on q
(λ l x i, i)
(λ b l l' q r x xinbl', or.elim xinbl'
(λ xeqb : x = b, xeqb ▸ or.inr (mem_cons x l))
(λ xinl' : x ∈ l', or.elim (r x xinl')
(λ xeqa : x = a, xeqa ▸ mem_cons x (b::l))
(λ xinl : x ∈ l, or.inr (or.inr xinl))))
lemma length_eq_of_qeq {a : A} {l₁ l₂ : list A} : l₁≈a|l₂ → length l₁ = succ (length l₂) :=
take q, qeq.induction_on q
(λ l, rfl)
(λ b l l' q r, by rewrite [*length_cons, r])
lemma qeq_of_mem {a : A} {l : list A} : a ∈ l → (∃l', l≈a|l') :=
list.induction_on l
(λ h : a ∈ nil, absurd h (not_mem_nil a))
(λ x xs r ainxxs, or.elim ainxxs
(λ aeqx : a = x,
assert aux : ∃ l, x::xs≈x|l, from
exists.intro xs (qhead x xs),
by rewrite aeqx; exact aux)
(λ ainxs : a ∈ xs,
have ex : ∃l', xs ≈ a|l', from r ainxs,
obtain (l' : list A) (q : xs ≈ a|l'), from ex,
have q₂ : x::xs ≈ a | x::l', from qcons x q,
exists.intro (x::l') q₂))
lemma qeq_split {a : A} {l l' : list A} : l'≈a|l → ∃l₁ l₂, l = l₁++l₂ ∧ l' = l₁++(a::l₂) :=
take q, qeq.induction_on q
(λ t,
have aux : t = []++t ∧ a::t = []++(a::t), from and.intro rfl rfl,
exists.intro [] (exists.intro t aux))
(λ b t t' q r,
obtain (l₁ l₂ : list A) (h : t = l₁++l₂ ∧ t' = l₁++(a::l₂)), from r,
have aux : b::t = (b::l₁)++l₂ ∧ b::t' = (b::l₁)++(a::l₂),
begin
rewrite [and.elim_right h, and.elim_left h],
exact (and.intro rfl rfl)
end,
exists.intro (b::l₁) (exists.intro l₂ aux))
lemma sub_of_mem_of_sub_of_qeq {a : A} {l : list A} {u v : list A} : a ∉ l → a::l ⊆ v → v≈a|u → l ⊆ u :=
λ (nainl : a ∉ l) (s : a::l ⊆ v) (q : v≈a|u) (x : A) (xinl : x ∈ l),
have xinv : x ∈ v, from s (or.inr xinl),
have xinau : x ∈ a::u, from mem_cons_of_qeq q x xinv,
or.elim xinau
(λ xeqa : x = a, absurd (xeqa ▸ xinl) nainl)
(λ xinu : x ∈ u, xinu)
end qeq
section erase
variable {A : Type}
variable [H : decidable_eq A]
include H
definition erase (a : A) : list A → list A
| [] := []
| (b::l) :=
match H a b with
| inl e := l
| inr n := b :: erase l
end
lemma erase_nil (a : A) : erase a [] = [] :=
rfl
lemma erase_cons_head (a : A) (l : list A) : erase a (a :: l) = l :=
show match H a a with | inl e := l | inr n := a :: erase a l end = l,
by rewrite decidable_eq_inl_refl
lemma erase_cons_tail {a b : A} (l : list A) : a ≠ b → erase a (b::l) = b :: erase a l :=
assume h : a ≠ b,
show match H a b with | inl e := l | inr n₁ := b :: erase a l end = b :: erase a l,
by rewrite (decidable_eq_inr_neg h)
lemma length_erase_of_mem (a : A) : ∀ l, a ∈ l → length (erase a l) = pred (length l)
| [] h := rfl
| [x] h := by rewrite [mem_singleton h, erase_cons_head]
| (x::y::xs) h :=
by_cases
(λ aeqx : a = x, by rewrite [aeqx, erase_cons_head])
(λ anex : a ≠ x,
assert ainyxs : a ∈ y::xs, from or_resolve_right h anex,
by rewrite [erase_cons_tail _ anex, *length_cons, length_erase_of_mem (y::xs) ainyxs])
lemma length_erase_of_not_mem (a : A) : ∀ l, a ∉ l → length (erase a l) = length l
| [] h := rfl
| (x::xs) h :=
assert anex : a ≠ x, from λ aeqx : a = x, absurd (or.inl aeqx) h,
assert aninxs : a ∉ xs, from λ ainxs : a ∈ xs, absurd (or.inr ainxs) h,
by rewrite [erase_cons_tail _ anex, length_cons, length_erase_of_not_mem xs aninxs]
lemma erase_append_left {a : A} : ∀ {l₁} (l₂), a ∈ l₁ → erase a (l₁++l₂) = erase a l₁ ++ l₂
| [] l₂ h := absurd h !not_mem_nil
| (x::xs) l₂ h :=
by_cases
(λ aeqx : a = x, by rewrite [aeqx, append_cons, *erase_cons_head])
(λ anex : a ≠ x,
assert ainxs : a ∈ xs, from mem_of_ne_of_mem anex h,
by rewrite [append_cons, *erase_cons_tail _ anex, erase_append_left l₂ ainxs])
lemma erase_append_right {a : A} : ∀ {l₁} (l₂), a ∉ l₁ → erase a (l₁++l₂) = l₁ ++ erase a l₂
| [] l₂ h := _
| (x::xs) l₂ h :=
by_cases
(λ aeqx : a = x, by rewrite aeqx at h; exact (absurd !mem_cons h))
(λ anex : a ≠ x,
assert nainxs : a ∉ xs, from not_mem_of_not_mem h,
by rewrite [append_cons, *erase_cons_tail _ anex, erase_append_right l₂ nainxs])
lemma erase_sub (a : A) : ∀ l, erase a l ⊆ l
| [] := λ x xine, xine
| (x::xs) := λ y xine,
by_cases
(λ aeqx : a = x, by rewrite [aeqx at xine, erase_cons_head at xine]; exact (or.inr xine))
(λ anex : a ≠ x,
assert yinxe : y ∈ x :: erase a xs, by rewrite [erase_cons_tail _ anex at xine]; exact xine,
assert subxs : erase a xs ⊆ xs, from erase_sub xs,
by_cases
(λ yeqx : y = x, by rewrite yeqx; apply mem_cons)
(λ ynex : y ≠ x,
assert yine : y ∈ erase a xs, from mem_of_ne_of_mem ynex yinxe,
assert yinxs : y ∈ xs, from subxs yine,
or.inr yinxs))
end erase
/- disjoint -/
section disjoint
variable {A : Type}
definition disjoint (l₁ l₂ : list A) : Prop := ∀ a, (a ∈ l₁ → a ∉ l₂) ∧ (a ∈ l₂ → a ∉ l₁)
lemma disjoint_left {l₁ l₂ : list A} : disjoint l₁ l₂ → ∀ {a}, a ∈ l₁ → a ∉ l₂ :=
λ d a, and.elim_left (d a)
lemma disjoint_right {l₁ l₂ : list A} : disjoint l₁ l₂ → ∀ {a}, a ∈ l₂ → a ∉ l₁ :=
λ d a, and.elim_right (d a)
lemma disjoint.comm {l₁ l₂ : list A} : disjoint l₁ l₂ → disjoint l₂ l₁ :=
λ d a, and.intro
(λ ainl₂ : a ∈ l₂, disjoint_right d ainl₂)
(λ ainl₁ : a ∈ l₁, disjoint_left d ainl₁)
lemma disjoint_of_disjoint_cons_left {a : A} {l₁ l₂} : disjoint (a::l₁) l₂ → disjoint l₁ l₂ :=
λ d x, and.intro
(λ xinl₁ : x ∈ l₁, disjoint_left d (or.inr xinl₁))
(λ xinl₂ : x ∈ l₂,
have nxinal₁ : x ∉ a::l₁, from disjoint_right d xinl₂,
not_mem_of_not_mem nxinal₁)
lemma disjoint_of_disjoint_cons_right {a : A} {l₁ l₂} : disjoint l₁ (a::l₂) → disjoint l₁ l₂ :=
λ d, disjoint.comm (disjoint_of_disjoint_cons_left (disjoint.comm d))
lemma disjoint_nil_left (l : list A) : disjoint [] l :=
λ a, and.intro
(λ ab : a ∈ nil, absurd ab !not_mem_nil)
(λ ainl : a ∈ l, !not_mem_nil)
lemma disjoint_nil_right (l : list A) : disjoint l [] :=
disjoint.comm (disjoint_nil_left l)
lemma disjoint_cons_of_not_mem_of_disjoint {a : A} {l₁ l₂} : a ∉ l₂ → disjoint l₁ l₂ → disjoint (a::l₁) l₂ :=
λ nainl₂ d x, and.intro
(λ xinal₁ : x ∈ a::l₁, or.elim xinal₁
(λ xeqa : x = a, xeqa⁻¹ ▸ nainl₂)
(λ xinl₁ : x ∈ l₁, disjoint_left d xinl₁))
(λ (xinl₂ : x ∈ l₂) (xinal₁ : x ∈ a::l₁), or.elim xinal₁
(λ xeqa : x = a, absurd (xeqa ▸ xinl₂) nainl₂)
(λ xinl₁ : x ∈ l₁, absurd xinl₁ (disjoint_right d xinl₂)))
lemma disjoint_of_disjoint_append_left_left : ∀ {l₁ l₂ l : list A}, disjoint (l₁++l₂) l → disjoint l₁ l
| [] l₂ l d := disjoint_nil_left l
| (x::xs) l₂ l d :=
have nxinl : x ∉ l, from disjoint_left d !mem_cons,
have d₁ : disjoint (xs++l₂) l, from disjoint_of_disjoint_cons_left d,
have d₂ : disjoint xs l, from disjoint_of_disjoint_append_left_left d₁,
disjoint_cons_of_not_mem_of_disjoint nxinl d₂
lemma disjoint_of_disjoint_append_left_right : ∀ {l₁ l₂ l : list A}, disjoint (l₁++l₂) l → disjoint l₂ l
| [] l₂ l d := d
| (x::xs) l₂ l d :=
have d₁ : disjoint (xs++l₂) l, from disjoint_of_disjoint_cons_left d,
disjoint_of_disjoint_append_left_right d₁
lemma disjoint_of_disjoint_append_right_left : ∀ {l₁ l₂ l : list A}, disjoint l (l₁++l₂) → disjoint l l₁ :=
λ l₁ l₂ l d, disjoint.comm (disjoint_of_disjoint_append_left_left (disjoint.comm d))
lemma disjoint_of_disjoint_append_right_right : ∀ {l₁ l₂ l : list A}, disjoint l (l₁++l₂) → disjoint l l₂ :=
λ l₁ l₂ l d, disjoint.comm (disjoint_of_disjoint_append_left_right (disjoint.comm d))
end disjoint
/- no duplicates predicate -/
inductive nodup {A : Type} : list A → Prop :=
| ndnil : nodup []
| ndcons : ∀ {a l}, a ∉ l → nodup l → nodup (a::l)
section nodup
open nodup
variables {A B : Type}
lemma nodup_nil : @nodup A [] :=
ndnil
lemma nodup_cons {a : A} {l : list A} : a ∉ l → nodup l → nodup (a::l) :=
λ i n, ndcons i n
lemma nodup_of_nodup_cons : ∀ {a : A} {l : list A}, nodup (a::l) → nodup l
| a xs (ndcons i n) := n
lemma not_mem_of_nodup_cons : ∀ {a : A} {l : list A}, nodup (a::l) → a ∉ l
| a xs (ndcons i n) := i
lemma nodup_of_nodup_append_left : ∀ {l₁ l₂ : list A}, nodup (l₁++l₂) → nodup l₁
| [] l₂ n := nodup_nil
| (x::xs) l₂ n :=
have ndxs : nodup xs, from nodup_of_nodup_append_left (nodup_of_nodup_cons n),
have nxinxsl₂ : x ∉ xs++l₂, from not_mem_of_nodup_cons n,
have nxinxs : x ∉ xs, from not_mem_of_not_mem_append_left nxinxsl₂,
nodup_cons nxinxs ndxs
lemma nodup_of_nodup_append_right : ∀ {l₁ l₂ : list A}, nodup (l₁++l₂) → nodup l₂
| [] l₂ n := n
| (x::xs) l₂ n := nodup_of_nodup_append_right (nodup_of_nodup_cons n)
lemma nodup_map {f : A → B} (inj : injective f) : ∀ {l : list A}, nodup l → nodup (map f l)
| [] n := begin rewrite [map_nil], apply nodup_nil end
| (x::xs) n :=
assert nxinxs : x ∉ xs, from not_mem_of_nodup_cons n,
assert ndxs : nodup xs, from nodup_of_nodup_cons n,
assert ndmfxs : nodup (map f xs), from nodup_map ndxs,
assert nfxinm : f x ∉ map f xs, from
λ ab : f x ∈ map f xs,
obtain (finv : B → A) (isinv : finv ∘ f = id), from inj,
assert finvfxin : finv (f x) ∈ map finv (map f xs), from mem_map finv ab,
assert xinxs : x ∈ xs,
begin
rewrite [map_map at finvfxin, isinv at finvfxin, left_inv_eq isinv at finvfxin],
rewrite [map_id at finvfxin],
exact finvfxin
end,
absurd xinxs nxinxs,
nodup_cons nfxinm ndmfxs
end nodup
end list
attribute list.has_decidable_eq [instance]
attribute list.decidable_mem [instance]
attribute list.decidable_any [instance]
attribute list.decidable_all [instance]