2015-04-19 21:18:49 +00:00
|
|
|
|
/-
|
|
|
|
|
Copyright (c) 2015 Microsoft Corporation. All rights reserved.
|
|
|
|
|
Released under Apache 2.0 license as described in the file LICENSE.
|
|
|
|
|
Author: Leonardo de Moura
|
|
|
|
|
|
|
|
|
|
Type class for encodable types.
|
|
|
|
|
Note that every encodable type is countable.
|
|
|
|
|
-/
|
2015-08-08 20:50:22 +00:00
|
|
|
|
import data.fintype data.list data.sum data.nat.div data.subtype data.countable data.equiv
|
2015-04-19 21:18:49 +00:00
|
|
|
|
open option list nat function
|
|
|
|
|
|
|
|
|
|
structure encodable [class] (A : Type) :=
|
|
|
|
|
(encode : A → nat) (decode : nat → option A) (encodek : ∀ a, decode (encode a) = some a)
|
|
|
|
|
|
|
|
|
|
open encodable
|
|
|
|
|
|
|
|
|
|
definition countable_of_encodable {A : Type} : encodable A → countable A :=
|
|
|
|
|
assume e : encodable A,
|
2015-07-20 04:15:20 +00:00
|
|
|
|
have injective encode, from
|
2015-04-19 21:18:49 +00:00
|
|
|
|
λ (a₁ a₂ : A) (h : encode a₁ = encode a₂),
|
2015-07-20 04:15:20 +00:00
|
|
|
|
assert decode A (encode a₁) = decode A (encode a₂), by rewrite h,
|
|
|
|
|
by rewrite [*encodek at this]; injection this; assumption,
|
|
|
|
|
exists.intro encode this
|
2015-04-19 21:18:49 +00:00
|
|
|
|
|
|
|
|
|
definition encodable_fintype [instance] {A : Type} [h₁ : fintype A] [h₂ : decidable_eq A] : encodable A :=
|
|
|
|
|
encodable.mk
|
|
|
|
|
(λ a, find a (elements_of A))
|
|
|
|
|
(λ n, nth (elements_of A) n)
|
|
|
|
|
(λ a, find_nth (fintype.complete a))
|
|
|
|
|
|
|
|
|
|
definition encodable_nat [instance] : encodable nat :=
|
|
|
|
|
encodable.mk (λ a, a) (λ n, some n) (λ a, rfl)
|
|
|
|
|
|
|
|
|
|
definition encodable_option [instance] {A : Type} [h : encodable A] : encodable (option A) :=
|
|
|
|
|
encodable.mk
|
|
|
|
|
(λ o, match o with
|
|
|
|
|
| some a := succ (encode a)
|
|
|
|
|
| none := 0
|
|
|
|
|
end)
|
|
|
|
|
(λ n, if n = 0 then some none else some (decode A (pred n)))
|
|
|
|
|
(λ o,
|
|
|
|
|
begin
|
2015-04-30 18:00:39 +00:00
|
|
|
|
cases o with a,
|
2015-04-19 21:18:49 +00:00
|
|
|
|
begin esimp end,
|
2015-06-04 23:16:28 +00:00
|
|
|
|
begin esimp, rewrite [if_neg !succ_ne_zero, encodable.encodek] end
|
2015-04-19 21:18:49 +00:00
|
|
|
|
end)
|
|
|
|
|
|
|
|
|
|
section sum
|
|
|
|
|
variables {A B : Type}
|
|
|
|
|
variables [h₁ : encodable A] [h₂ : encodable B]
|
|
|
|
|
include h₁ h₂
|
|
|
|
|
|
|
|
|
|
definition encode_sum : sum A B → nat
|
|
|
|
|
| (sum.inl a) := 2 * encode a
|
|
|
|
|
| (sum.inr b) := 2 * encode b + 1
|
|
|
|
|
|
|
|
|
|
definition decode_sum (n : nat) : option (sum A B) :=
|
|
|
|
|
if n mod 2 = 0 then
|
|
|
|
|
match decode A (n div 2) with
|
|
|
|
|
| some a := some (sum.inl a)
|
|
|
|
|
| none := none
|
|
|
|
|
end
|
|
|
|
|
else
|
|
|
|
|
match decode B ((n - 1) div 2) with
|
|
|
|
|
| some b := some (sum.inr b)
|
|
|
|
|
| none := none
|
|
|
|
|
end
|
|
|
|
|
|
|
|
|
|
open decidable
|
|
|
|
|
theorem decode_encode_sum : ∀ s : sum A B, decode_sum (encode_sum s) = some s
|
|
|
|
|
| (sum.inl a) :=
|
|
|
|
|
assert aux : 2 > 0, from dec_trivial,
|
|
|
|
|
begin
|
|
|
|
|
esimp [encode_sum, decode_sum],
|
2015-08-08 20:50:22 +00:00
|
|
|
|
rewrite [mul_mod_right, if_pos (eq.refl (0 : nat)), mul_div_cancel_left _ aux, encodable.encodek]
|
2015-04-19 21:18:49 +00:00
|
|
|
|
end
|
|
|
|
|
| (sum.inr b) :=
|
|
|
|
|
assert aux₁ : 2 > 0, from dec_trivial,
|
2015-05-30 12:09:34 +00:00
|
|
|
|
assert aux₂ : 1 mod 2 = 1, by rewrite [nat.modulo_def],
|
2015-04-19 21:18:49 +00:00
|
|
|
|
assert aux₃ : 1 ≠ 0, from dec_trivial,
|
|
|
|
|
begin
|
|
|
|
|
esimp [encode_sum, decode_sum],
|
2015-05-29 07:31:04 +00:00
|
|
|
|
rewrite [add.comm, add_mul_mod_self_left, aux₂, if_neg aux₃, add_sub_cancel_left,
|
2015-04-19 21:18:49 +00:00
|
|
|
|
mul_div_cancel_left _ aux₁, encodable.encodek]
|
|
|
|
|
end
|
|
|
|
|
|
|
|
|
|
definition encodable_sum [instance] : encodable (sum A B) :=
|
|
|
|
|
encodable.mk
|
|
|
|
|
(λ s, encode_sum s)
|
|
|
|
|
(λ n, decode_sum n)
|
|
|
|
|
(λ s, decode_encode_sum s)
|
|
|
|
|
end sum
|
|
|
|
|
|
|
|
|
|
section prod
|
|
|
|
|
variables {A B : Type}
|
|
|
|
|
variables [h₁ : encodable A] [h₂ : encodable B]
|
|
|
|
|
include h₁ h₂
|
|
|
|
|
|
|
|
|
|
definition encode_prod : A × B → nat
|
|
|
|
|
| (a, b) := mkpair (encode a) (encode b)
|
|
|
|
|
|
|
|
|
|
definition decode_prod (n : nat) : option (A × B) :=
|
|
|
|
|
match unpair n with
|
|
|
|
|
| (n₁, n₂) :=
|
|
|
|
|
match decode A n₁ with
|
|
|
|
|
| some a :=
|
|
|
|
|
match decode B n₂ with
|
|
|
|
|
| some b := some (a, b)
|
|
|
|
|
| none := none
|
|
|
|
|
end
|
|
|
|
|
| none := none
|
|
|
|
|
end
|
|
|
|
|
end
|
|
|
|
|
|
|
|
|
|
theorem decode_encode_prod : ∀ p : A × B, decode_prod (encode_prod p) = some p
|
|
|
|
|
| (a, b) :=
|
|
|
|
|
begin
|
|
|
|
|
esimp [encode_prod, decode_prod, prod.cases_on],
|
|
|
|
|
rewrite [unpair_mkpair],
|
|
|
|
|
esimp,
|
|
|
|
|
rewrite [*encodable.encodek]
|
|
|
|
|
end
|
|
|
|
|
|
|
|
|
|
definition encodable_product [instance] : encodable (A × B) :=
|
|
|
|
|
encodable.mk
|
|
|
|
|
encode_prod
|
|
|
|
|
decode_prod
|
|
|
|
|
decode_encode_prod
|
|
|
|
|
end prod
|
|
|
|
|
|
|
|
|
|
section list
|
|
|
|
|
variables {A : Type}
|
|
|
|
|
variables [h : encodable A]
|
|
|
|
|
include h
|
|
|
|
|
|
|
|
|
|
definition encode_list_core : list A → nat
|
|
|
|
|
| [] := 0
|
|
|
|
|
| (a::l) := mkpair (encode a) (encode_list_core l)
|
|
|
|
|
|
|
|
|
|
theorem encode_list_core_cons (a : A) (l : list A) : encode_list_core (a::l) = mkpair (encode a) (encode_list_core l) :=
|
|
|
|
|
rfl
|
|
|
|
|
|
|
|
|
|
definition encode_list (l : list A) : nat :=
|
|
|
|
|
mkpair (length l) (encode_list_core l)
|
|
|
|
|
|
|
|
|
|
definition decode_list_core : nat → nat → option (list A)
|
|
|
|
|
| 0 v := some []
|
|
|
|
|
| (succ n) v :=
|
|
|
|
|
match unpair v with
|
|
|
|
|
| (v₁, v₂) :=
|
|
|
|
|
match decode A v₁ with
|
|
|
|
|
| some a :=
|
|
|
|
|
match decode_list_core n v₂ with
|
|
|
|
|
| some l := some (a::l)
|
|
|
|
|
| none := none
|
|
|
|
|
end
|
|
|
|
|
| none := none
|
|
|
|
|
end
|
|
|
|
|
end
|
|
|
|
|
|
|
|
|
|
theorem decode_list_core_succ (n v : nat) :
|
|
|
|
|
decode_list_core (succ n) v =
|
|
|
|
|
match unpair v with
|
|
|
|
|
| (v₁, v₂) :=
|
|
|
|
|
match decode A v₁ with
|
|
|
|
|
| some a :=
|
|
|
|
|
match decode_list_core n v₂ with
|
|
|
|
|
| some l := some (a::l)
|
|
|
|
|
| none := none
|
|
|
|
|
end
|
|
|
|
|
| none := none
|
|
|
|
|
end
|
|
|
|
|
end
|
|
|
|
|
:= rfl
|
|
|
|
|
|
|
|
|
|
definition decode_list (n : nat) : option (list A) :=
|
|
|
|
|
match unpair n with
|
|
|
|
|
| (l, v) := decode_list_core l v
|
|
|
|
|
end
|
|
|
|
|
|
|
|
|
|
theorem decode_encode_list_core : ∀ l : list A, decode_list_core (length l) (encode_list_core l) = some l
|
|
|
|
|
| [] := rfl
|
|
|
|
|
| (a::l) :=
|
|
|
|
|
begin
|
|
|
|
|
rewrite [encode_list_core_cons, length_cons, add_one (length l), decode_list_core_succ],
|
|
|
|
|
rewrite [unpair_mkpair],
|
|
|
|
|
esimp [prod.cases_on],
|
|
|
|
|
rewrite [decode_encode_list_core l],
|
|
|
|
|
rewrite [encodable.encodek],
|
|
|
|
|
end
|
|
|
|
|
|
|
|
|
|
theorem decode_encode_list (l : list A) : decode_list (encode_list l) = some l :=
|
|
|
|
|
begin
|
|
|
|
|
esimp [encode_list, decode_list],
|
|
|
|
|
rewrite [unpair_mkpair],
|
|
|
|
|
esimp [prod.cases_on],
|
|
|
|
|
apply decode_encode_list_core
|
|
|
|
|
end
|
|
|
|
|
|
|
|
|
|
definition encodable_list [instance] : encodable (list A) :=
|
|
|
|
|
encodable.mk
|
|
|
|
|
encode_list
|
|
|
|
|
decode_list
|
|
|
|
|
decode_encode_list
|
|
|
|
|
end list
|
|
|
|
|
|
|
|
|
|
definition encodable_of_left_injection
|
|
|
|
|
{A B : Type} [h₁ : encodable A]
|
|
|
|
|
(f : B → A) (finv : A → option B) (linv : ∀ b, finv (f b) = some b) : encodable B :=
|
|
|
|
|
encodable.mk
|
|
|
|
|
(λ b, encode (f b))
|
|
|
|
|
(λ n,
|
|
|
|
|
match decode A n with
|
|
|
|
|
| some a := finv a
|
|
|
|
|
| none := none
|
|
|
|
|
end)
|
|
|
|
|
(λ b,
|
|
|
|
|
begin
|
|
|
|
|
esimp,
|
|
|
|
|
rewrite [encodable.encodek],
|
|
|
|
|
esimp [option.cases_on],
|
|
|
|
|
rewrite [linv]
|
|
|
|
|
end)
|
|
|
|
|
|
2015-07-06 19:17:57 +00:00
|
|
|
|
section
|
|
|
|
|
open equiv
|
|
|
|
|
|
|
|
|
|
definition encodable_of_equiv {A B : Type} [h : encodable A] : A ≃ B → encodable B
|
|
|
|
|
| (mk f g l r) :=
|
|
|
|
|
encodable_of_left_injection g (λ a, some (f a))
|
|
|
|
|
(λ b, by rewrite r; reflexivity)
|
|
|
|
|
end
|
|
|
|
|
|
2015-04-19 21:18:49 +00:00
|
|
|
|
/-
|
|
|
|
|
Choice function for encodable types and decidable predicates.
|
|
|
|
|
We provide the following API
|
|
|
|
|
|
|
|
|
|
choose {A : Type} {p : A → Prop} [c : encodable A] [d : decidable_pred p] : (∃ x, p x) → A :=
|
|
|
|
|
choose_spec {A : Type} {p : A → Prop} [c : encodable A] [d : decidable_pred p] (ex : ∃ x, p x) : p (choose ex) :=
|
|
|
|
|
-/
|
|
|
|
|
section find_a
|
|
|
|
|
parameters {A : Type} {p : A → Prop} [c : encodable A] [d : decidable_pred p]
|
|
|
|
|
include c
|
|
|
|
|
include d
|
|
|
|
|
|
|
|
|
|
private definition pn (n : nat) : Prop :=
|
|
|
|
|
match decode A n with
|
|
|
|
|
| some a := p a
|
|
|
|
|
| none := false
|
|
|
|
|
end
|
|
|
|
|
|
|
|
|
|
private definition decidable_pn : decidable_pred pn :=
|
|
|
|
|
λ n,
|
|
|
|
|
match decode A n with
|
|
|
|
|
| some a := λ e : decode A n = some a,
|
|
|
|
|
match d a with
|
|
|
|
|
| decidable.inl t :=
|
|
|
|
|
begin
|
|
|
|
|
unfold pn, rewrite e, esimp [option.cases_on],
|
|
|
|
|
exact (decidable.inl t)
|
|
|
|
|
end
|
|
|
|
|
| decidable.inr f :=
|
|
|
|
|
begin
|
|
|
|
|
unfold pn, rewrite e, esimp [option.cases_on],
|
|
|
|
|
exact (decidable.inr f)
|
|
|
|
|
end
|
|
|
|
|
end
|
|
|
|
|
| none := λ e : decode A n = none,
|
|
|
|
|
begin
|
|
|
|
|
unfold pn, rewrite e, esimp [option.cases_on],
|
|
|
|
|
exact decidable_false
|
|
|
|
|
end
|
|
|
|
|
end (eq.refl (decode A n))
|
|
|
|
|
|
|
|
|
|
private definition ex_pn_of_ex : (∃ x, p x) → (∃ x, pn x) :=
|
|
|
|
|
assume ex,
|
|
|
|
|
obtain (w : A) (pw : p w), from ex,
|
|
|
|
|
exists.intro (encode w)
|
|
|
|
|
begin
|
|
|
|
|
unfold pn, rewrite [encodek], esimp, exact pw
|
|
|
|
|
end
|
|
|
|
|
|
2015-05-09 19:15:30 +00:00
|
|
|
|
private lemma decode_ne_none_of_pn {n : nat} : pn n → decode A n ≠ none :=
|
2015-04-19 21:18:49 +00:00
|
|
|
|
assume pnn e,
|
|
|
|
|
begin
|
|
|
|
|
rewrite [▸ (match decode A n with | some a := p a | none := false end) at pnn],
|
|
|
|
|
rewrite [e at pnn], esimp [option.cases_on] at pnn,
|
|
|
|
|
exact (false.elim pnn)
|
|
|
|
|
end
|
|
|
|
|
|
|
|
|
|
open subtype
|
|
|
|
|
|
2015-04-26 06:10:48 +00:00
|
|
|
|
private definition of_nat (n : nat) : pn n → { a : A | p a } :=
|
2015-04-19 21:18:49 +00:00
|
|
|
|
match decode A n with
|
|
|
|
|
| some a := λ (e : decode A n = some a),
|
|
|
|
|
begin
|
|
|
|
|
unfold pn, rewrite e, esimp [option.cases_on], intro pa,
|
|
|
|
|
exact (tag a pa)
|
|
|
|
|
end
|
|
|
|
|
| none := λ (e : decode A n = none) h, absurd e (decode_ne_none_of_pn h)
|
|
|
|
|
end (eq.refl (decode A n))
|
|
|
|
|
|
|
|
|
|
private definition find_a : (∃ x, p x) → {a : A | p a} :=
|
2015-07-20 04:15:20 +00:00
|
|
|
|
suppose ∃ x, p x,
|
|
|
|
|
have ∃ x, pn x, from ex_pn_of_ex this,
|
2015-07-25 18:25:04 +00:00
|
|
|
|
let r := @nat.find _ decidable_pn this in
|
|
|
|
|
have pn r, from @nat.find_spec pn decidable_pn this,
|
2015-07-20 04:15:20 +00:00
|
|
|
|
of_nat r this
|
2015-04-19 21:18:49 +00:00
|
|
|
|
end find_a
|
|
|
|
|
|
|
|
|
|
namespace encodable
|
|
|
|
|
open subtype
|
|
|
|
|
|
|
|
|
|
definition choose {A : Type} {p : A → Prop} [c : encodable A] [d : decidable_pred p] : (∃ x, p x) → A :=
|
|
|
|
|
assume ex, elt_of (find_a ex)
|
|
|
|
|
|
|
|
|
|
theorem choose_spec {A : Type} {p : A → Prop} [c : encodable A] [d : decidable_pred p] (ex : ∃ x, p x) : p (choose ex) :=
|
|
|
|
|
has_property (find_a ex)
|
|
|
|
|
|
|
|
|
|
theorem axiom_of_choice {A : Type} {B : A → Type} {R : Π x, B x → Prop} [c : Π a, encodable (B a)] [d : ∀ x y, decidable (R x y)]
|
|
|
|
|
: (∀x, ∃y, R x y) → ∃f, ∀x, R x (f x) :=
|
|
|
|
|
assume H,
|
2015-07-20 04:15:20 +00:00
|
|
|
|
have ∀x, R x (choose (H x)), from take x, choose_spec (H x),
|
|
|
|
|
exists.intro _ this
|
2015-04-19 21:18:49 +00:00
|
|
|
|
|
|
|
|
|
theorem skolem {A : Type} {B : A → Type} {P : Π x, B x → Prop} [c : Π a, encodable (B a)] [d : ∀ x y, decidable (P x y)]
|
|
|
|
|
: (∀x, ∃y, P x y) ↔ ∃f, (∀x, P x (f x)) :=
|
|
|
|
|
iff.intro
|
2015-07-20 04:15:20 +00:00
|
|
|
|
(suppose (∀ x, ∃y, P x y), axiom_of_choice this)
|
|
|
|
|
(suppose (∃ f, (∀x, P x (f x))),
|
|
|
|
|
take x, obtain (fw : ∀x, B x) (Hw : ∀x, P x (fw x)), from this,
|
|
|
|
|
exists.intro (fw x) (Hw x))
|
2015-04-19 21:18:49 +00:00
|
|
|
|
end encodable
|
2015-06-02 18:03:24 +00:00
|
|
|
|
|
|
|
|
|
namespace quot
|
|
|
|
|
section
|
|
|
|
|
open setoid encodable
|
|
|
|
|
parameter {A : Type}
|
|
|
|
|
parameter {s : setoid A}
|
|
|
|
|
parameter [decR : ∀ a b : A, decidable (a ≈ b)]
|
|
|
|
|
parameter [encA : encodable A]
|
|
|
|
|
include decR
|
|
|
|
|
include encA
|
|
|
|
|
|
|
|
|
|
-- Choose equivalence class representative
|
|
|
|
|
definition rep (q : quot s) : A :=
|
|
|
|
|
choose (exists_rep q)
|
|
|
|
|
|
|
|
|
|
theorem rep_spec (q : quot s) : ⟦rep q⟧ = q :=
|
|
|
|
|
choose_spec (exists_rep q)
|
|
|
|
|
end
|
|
|
|
|
end quot
|