lean2/hott/hit/pushout.hlean

93 lines
3.2 KiB
Text
Raw Normal View History

2015-04-04 04:20:19 +00:00
/-
Copyright (c) 2015 Floris van Doorn. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Floris van Doorn
Declaration of the pushout
2015-04-04 04:20:19 +00:00
-/
import .type_quotient
open type_quotient eq sum equiv equiv.ops
2015-04-04 04:20:19 +00:00
namespace pushout
section
2015-04-04 04:20:19 +00:00
parameters {TL BL TR : Type} (f : TL → BL) (g : TL → TR)
local abbreviation A := BL + TR
inductive pushout_rel : A → A → Type :=
| Rmk : Π(x : TL), pushout_rel (inl (f x)) (inr (g x))
open pushout_rel
local abbreviation R := pushout_rel
definition pushout : Type := type_quotient pushout_rel -- TODO: define this in root namespace
2015-04-04 04:20:19 +00:00
definition inl (x : BL) : pushout :=
class_of R (inl x)
2015-04-04 04:20:19 +00:00
definition inr (x : TR) : pushout :=
class_of R (inr x)
2015-04-04 04:20:19 +00:00
definition glue (x : TL) : inl (f x) = inr (g x) :=
eq_of_rel pushout_rel (Rmk f g x)
2015-04-04 04:20:19 +00:00
protected definition rec {P : pushout → Type} (Pinl : Π(x : BL), P (inl x))
(Pinr : Π(x : TR), P (inr x)) (Pglue : Π(x : TL), Pinl (f x) =[glue x] Pinr (g x))
2015-04-04 04:20:19 +00:00
(y : pushout) : P y :=
begin
induction y,
{ cases a,
apply Pinl,
apply Pinr},
{ cases H, apply Pglue}
2015-04-04 04:20:19 +00:00
end
protected definition rec_on [reducible] {P : pushout → Type} (y : pushout)
(Pinl : Π(x : BL), P (inl x)) (Pinr : Π(x : TR), P (inr x))
(Pglue : Π(x : TL), Pinl (f x) =[glue x] Pinr (g x)) : P y :=
2015-04-04 04:20:19 +00:00
rec Pinl Pinr Pglue y
theorem rec_glue {P : pushout → Type} (Pinl : Π(x : BL), P (inl x))
(Pinr : Π(x : TR), P (inr x)) (Pglue : Π(x : TL), Pinl (f x) =[glue x] Pinr (g x))
(x : TL) : apdo (rec Pinl Pinr Pglue) (glue x) = Pglue x :=
!rec_eq_of_rel
protected definition elim {P : Type} (Pinl : BL → P) (Pinr : TR → P)
(Pglue : Π(x : TL), Pinl (f x) = Pinr (g x)) (y : pushout) : P :=
rec Pinl Pinr (λx, pathover_of_eq (Pglue x)) y
protected definition elim_on [reducible] {P : Type} (y : pushout) (Pinl : BL → P)
(Pinr : TR → P) (Pglue : Π(x : TL), Pinl (f x) = Pinr (g x)) : P :=
elim Pinl Pinr Pglue y
2015-04-04 04:20:19 +00:00
theorem elim_glue {P : Type} (Pinl : BL → P) (Pinr : TR → P)
(Pglue : Π(x : TL), Pinl (f x) = Pinr (g x)) (x : TL)
: ap (elim Pinl Pinr Pglue) (glue x) = Pglue x :=
begin
apply eq_of_fn_eq_fn_inv !(pathover_constant (glue x)),
rewrite [▸*,-apdo_eq_pathover_of_eq_ap,↑pushout.elim,rec_glue],
end
2015-04-04 04:20:19 +00:00
protected definition elim_type (Pinl : BL → Type) (Pinr : TR → Type)
(Pglue : Π(x : TL), Pinl (f x) ≃ Pinr (g x)) (y : pushout) : Type :=
elim Pinl Pinr (λx, ua (Pglue x)) y
protected definition elim_type_on [reducible] (y : pushout) (Pinl : BL → Type)
(Pinr : TR → Type) (Pglue : Π(x : TL), Pinl (f x) ≃ Pinr (g x)) : Type :=
elim_type Pinl Pinr Pglue y
theorem elim_type_glue (Pinl : BL → Type) (Pinr : TR → Type)
(Pglue : Π(x : TL), Pinl (f x) ≃ Pinr (g x)) (x : TL)
: transport (elim_type Pinl Pinr Pglue) (glue x) = Pglue x :=
by rewrite [tr_eq_cast_ap_fn,↑elim_type,elim_glue];apply cast_ua_fn
2015-04-04 04:20:19 +00:00
end
end pushout
attribute pushout.inl pushout.inr [constructor]
attribute pushout.elim pushout.rec [unfold-c 10] [recursor 10]
attribute pushout.elim_type [unfold-c 9]
attribute pushout.rec_on pushout.elim_on [unfold-c 7]
attribute pushout.elim_type_on [unfold-c 6]