lean2/library/theories/analysis/normed_space.lean

117 lines
4.2 KiB
Text
Raw Normal View History

/-
Copyright (c) 2015 Jeremy Avigad. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Author: Jeremy Avigad
Normed spaces.
-/
import algebra.module .real_limit
open real
noncomputable theory
structure has_norm [class] (M : Type) : Type :=
(norm : M → )
definition norm {M : Type} [has_normM : has_norm M] (v : M) : := has_norm.norm v
notation `∥`v`∥` := norm v
-- where is the right place to put this?
structure real_vector_space [class] (V : Type) extends vector_space V
structure normed_vector_space [class] (V : Type) extends real_vector_space V, has_norm V :=
(norm_zero : norm zero = 0)
(eq_zero_of_norm_eq_zero : ∀ u : V, norm u = 0 → u = zero)
(norm_triangle : ∀ u v, norm (add u v) ≤ norm u + norm v)
(norm_smul : ∀ (a : ) (v : V), norm (smul a v) = abs a * norm v)
-- what namespace should we put this in?
section normed_vector_space
variable {V : Type}
variable [normed_vector_space V]
proposition norm_zero : ∥ (0 : V) ∥ = 0 := !normed_vector_space.norm_zero
proposition eq_zero_of_norm_eq_zero {u : V} (H : ∥ u ∥ = 0) : u = 0 :=
!normed_vector_space.eq_zero_of_norm_eq_zero H
proposition norm_triangle (u v : V) : ∥ u + v ∥ ≤ ∥ u ∥ + ∥ v ∥ :=
!normed_vector_space.norm_triangle
proposition norm_smul (a : ) (v : V) : ∥ a • v ∥ = abs a * ∥ v ∥ :=
!normed_vector_space.norm_smul
proposition norm_neg (v : V) : ∥ -v ∥ = ∥ v ∥ :=
have abs (1 : ) = 1, from abs_of_nonneg zero_le_one,
by+ rewrite [-@neg_one_smul V, norm_smul, abs_neg, this, one_mul]
section
private definition nvs_dist (u v : V) := ∥ u - v ∥
private lemma nvs_dist_self (u : V) : nvs_dist u u = 0 :=
by rewrite [↑nvs_dist, sub_self, norm_zero]
private lemma eq_of_nvs_dist_eq_zero (u v : V) (H : nvs_dist u v = 0) : u = v :=
have u - v = 0, from eq_zero_of_norm_eq_zero H,
eq_of_sub_eq_zero this
private lemma nvs_dist_triangle (u v w : V) : nvs_dist u w ≤ nvs_dist u v + nvs_dist v w :=
calc
nvs_dist u w = ∥ (u - v) + (v - w) ∥ : by rewrite [↑nvs_dist, *sub_eq_add_neg, add.assoc,
neg_add_cancel_left]
... ≤ ∥ u - v ∥ + ∥ v - w ∥ : norm_triangle
private lemma nvs_dist_comm (u v : V) : nvs_dist u v = nvs_dist v u :=
by rewrite [↑nvs_dist, -norm_neg, neg_sub]
end
definition normed_vector_space_to_metric_space [reducible] [trans_instance] : metric_space V :=
⦃ metric_space,
dist := nvs_dist,
dist_self := nvs_dist_self,
eq_of_dist_eq_zero := eq_of_nvs_dist_eq_zero,
dist_comm := nvs_dist_comm,
dist_triangle := nvs_dist_triangle
end normed_vector_space
structure banach_space [class] (V : Type) extends nvsV : normed_vector_space V :=
(complete : ∀ X, @metric_space.cauchy V (@normed_vector_space_to_metric_space V nvsV) X →
@metric_space.converges_seq V (@normed_vector_space_to_metric_space V nvsV) X)
definition banach_space_to_metric_space [reducible] [trans_instance] (V : Type) [bsV : banach_space V] :
complete_metric_space V :=
⦃ complete_metric_space, normed_vector_space_to_metric_space,
complete := banach_space.complete
section
open metric_space
example (V : Type) (vsV : banach_space V) (X : → V) (H : cauchy X) : converges_seq X :=
complete V H
end
/- the real numbers themselves can be viewed as a banach space -/
definition real_is_real_vector_space [trans_instance] [reducible] : real_vector_space :=
⦃ real_vector_space, real.discrete_linear_ordered_field,
smul := mul,
smul_left_distrib := left_distrib,
smul_right_distrib := right_distrib,
smul_mul := mul.assoc,
one_smul := one_mul
definition real_is_banach_space [trans_instance] [reducible] : banach_space :=
⦃ banach_space, real_is_real_vector_space,
norm := abs,
norm_zero := abs_zero,
eq_zero_of_norm_eq_zero := λ a H, eq_zero_of_abs_eq_zero H,
norm_triangle := abs_add_le_abs_add_abs,
norm_smul := abs_mul,
complete := λ X H, complete H