2013-12-30 19:46:03 +00:00
|
|
|
|
Import kernel.
|
2013-12-30 11:29:20 +00:00
|
|
|
|
|
|
|
|
|
Variable Nat : Type.
|
|
|
|
|
Alias ℕ : Nat.
|
|
|
|
|
|
2014-01-01 20:40:54 +00:00
|
|
|
|
Namespace Nat.
|
|
|
|
|
Builtin numeral.
|
2013-12-30 11:29:20 +00:00
|
|
|
|
|
2014-01-01 20:40:54 +00:00
|
|
|
|
Builtin add : Nat → Nat → Nat.
|
|
|
|
|
Infixl 65 + : add.
|
2013-12-30 11:29:20 +00:00
|
|
|
|
|
2014-01-01 20:40:54 +00:00
|
|
|
|
Builtin mul : Nat → Nat → Nat.
|
|
|
|
|
Infixl 70 * : mul.
|
2013-12-30 11:29:20 +00:00
|
|
|
|
|
2014-01-01 20:40:54 +00:00
|
|
|
|
Builtin le : Nat → Nat → Bool.
|
|
|
|
|
Infix 50 <= : le.
|
|
|
|
|
Infix 50 ≤ : le.
|
2013-12-30 11:29:20 +00:00
|
|
|
|
|
2014-01-01 20:40:54 +00:00
|
|
|
|
Definition ge (a b : Nat) := b ≤ a.
|
|
|
|
|
Infix 50 >= : ge.
|
|
|
|
|
Infix 50 ≥ : ge.
|
2013-12-30 11:29:20 +00:00
|
|
|
|
|
2014-01-01 20:40:54 +00:00
|
|
|
|
Definition lt (a b : Nat) := ¬ (a ≥ b).
|
|
|
|
|
Infix 50 < : lt.
|
2013-12-30 11:29:20 +00:00
|
|
|
|
|
2014-01-01 20:40:54 +00:00
|
|
|
|
Definition gt (a b : Nat) := ¬ (a ≤ b).
|
|
|
|
|
Infix 50 > : gt.
|
2013-12-30 11:29:20 +00:00
|
|
|
|
|
2014-01-01 20:40:54 +00:00
|
|
|
|
Definition id (a : Nat) := a.
|
|
|
|
|
Notation 55 | _ | : id.
|
|
|
|
|
|
2014-01-02 05:32:07 +00:00
|
|
|
|
Axiom SuccInj {a b : Nat} (H : a + 1 = b + 1) : a = b
|
2014-01-01 23:53:53 +00:00
|
|
|
|
Axiom PlusZero (a : Nat) : a + 0 = a.
|
|
|
|
|
Axiom PlusSucc (a b : Nat) : a + (b + 1) = (a + b) + 1.
|
2014-01-02 05:32:07 +00:00
|
|
|
|
Axiom MulZero (a : Nat) : a * 0 = 0.
|
|
|
|
|
Axiom MulSucc (a b : Nat) : a * (b + 1) = a * b + a.
|
2014-01-02 01:19:12 +00:00
|
|
|
|
Axiom Induction {P : Nat → Bool} (Hb : P 0) (Hi : Π (n : Nat) (H : P n), P (n + 1)) (a : Nat) : P a.
|
2014-01-01 23:53:53 +00:00
|
|
|
|
|
2014-01-02 05:32:07 +00:00
|
|
|
|
Theorem ZeroNeOne : 0 ≠ 1 := Trivial.
|
|
|
|
|
|
2014-01-01 23:53:53 +00:00
|
|
|
|
Theorem ZeroPlus (a : Nat) : 0 + a = a
|
|
|
|
|
:= Induction (show 0 + 0 = 0, Trivial)
|
2014-01-02 01:19:12 +00:00
|
|
|
|
(λ (n : Nat) (Hi : 0 + n = n),
|
|
|
|
|
let L1 : 0 + (n + 1) = (0 + n) + 1 := PlusSucc 0 n
|
|
|
|
|
in show 0 + (n + 1) = n + 1, Subst L1 Hi)
|
2014-01-01 23:53:53 +00:00
|
|
|
|
a.
|
|
|
|
|
|
|
|
|
|
Theorem SuccPlus (a b : Nat) : (a + 1) + b = (a + b) + 1
|
|
|
|
|
:= Induction (show (a + 1) + 0 = (a + 0) + 1,
|
|
|
|
|
(Subst (PlusZero (a + 1)) (Symm (PlusZero a))))
|
2014-01-02 01:19:12 +00:00
|
|
|
|
(λ (n : Nat) (Hi : (a + 1) + n = (a + n) + 1),
|
|
|
|
|
let L1 : (a + 1) + (n + 1) = ((a + 1) + n) + 1 := PlusSucc (a + 1) n,
|
|
|
|
|
L2 : (a + 1) + (n + 1) = ((a + n) + 1) + 1 := Subst L1 Hi,
|
|
|
|
|
L3 : (a + n) + 1 = a + (n + 1) := Symm (PlusSucc a n)
|
|
|
|
|
in show (a + 1) + (n + 1) = (a + (n + 1)) + 1, Subst L2 L3)
|
2014-01-01 23:53:53 +00:00
|
|
|
|
b.
|
|
|
|
|
|
|
|
|
|
Theorem PlusComm (a b : Nat) : a + b = b + a
|
|
|
|
|
:= Induction (show a + 0 = 0 + a,
|
|
|
|
|
let L1 : a + 0 = a := PlusZero a,
|
|
|
|
|
L2 : a = 0 + a := Symm (ZeroPlus a)
|
|
|
|
|
in Trans L1 L2)
|
2014-01-02 01:19:12 +00:00
|
|
|
|
(λ (n : Nat) (Hi : a + n = n + a),
|
|
|
|
|
let L1 : a + (n + 1) = (a + n) + 1 := PlusSucc a n,
|
|
|
|
|
L2 : a + (n + 1) = (n + a) + 1 := Subst L1 Hi,
|
|
|
|
|
L3 : (n + a) + 1 = (n + 1) + a := Symm (SuccPlus n a)
|
|
|
|
|
in show a + (n + 1) = (n + 1) + a, Trans L2 L3)
|
2014-01-01 23:53:53 +00:00
|
|
|
|
b.
|
|
|
|
|
|
2014-01-02 01:19:12 +00:00
|
|
|
|
Theorem PlusAssoc (a b c : Nat) : a + (b + c) = (a + b) + c
|
|
|
|
|
:= Induction (show 0 + (b + c) = (0 + b) + c,
|
|
|
|
|
Subst (ZeroPlus (b + c)) (Symm (ZeroPlus b)))
|
|
|
|
|
(λ (n : Nat) (Hi : n + (b + c) = (n + b) + c),
|
|
|
|
|
let L1 : (n + 1) + (b + c) = (n + (b + c)) + 1 := SuccPlus n (b + c),
|
|
|
|
|
L2 : (n + 1) + (b + c) = ((n + b) + c) + 1 := Subst L1 Hi,
|
|
|
|
|
L3 : ((n + b) + 1) + c = ((n + b) + c) + 1 := SuccPlus (n + b) c,
|
|
|
|
|
L4 : (n + b) + 1 = (n + 1) + b := Symm (SuccPlus n b),
|
|
|
|
|
L5 : ((n + 1) + b) + c = ((n + b) + c) + 1 := Subst L3 L4,
|
|
|
|
|
L6 : ((n + b) + c) + 1 = ((n + 1) + b) + c := Symm L5
|
|
|
|
|
in show (n + 1) + (b + c) = ((n + 1) + b) + c, Trans L2 L6)
|
|
|
|
|
a.
|
|
|
|
|
|
2014-01-02 05:32:07 +00:00
|
|
|
|
Theorem ZeroMul (a : Nat) : 0 * a = 0
|
|
|
|
|
:= Induction (show 0 * 0 = 0, Trivial)
|
|
|
|
|
(λ (n : Nat) (Hi : 0 * n = 0),
|
|
|
|
|
let L1 : 0 * (n + 1) = (0 * n) + 0 := MulSucc 0 n,
|
|
|
|
|
L2 : 0 * (n + 1) = 0 + 0 := Subst L1 Hi
|
|
|
|
|
in show 0 * (n + 1) = 0, L2)
|
|
|
|
|
a.
|
|
|
|
|
|
|
|
|
|
Theorem SuccMul (a b : Nat) : (a + 1) * b = a * b + b
|
|
|
|
|
:= Induction (show (a + 1) * 0 = a * 0 + 0,
|
|
|
|
|
Trans (MulZero (a + 1)) (Symm (Subst (PlusZero (a * 0)) (MulZero a))))
|
|
|
|
|
(λ (n : Nat) (Hi : (a + 1) * n = a * n + n),
|
|
|
|
|
let L1 : (a + 1) * (n + 1) = (a + 1) * n + (a + 1) := MulSucc (a + 1) n,
|
|
|
|
|
L2 : (a + 1) * (n + 1) = a * n + n + (a + 1) := Subst L1 Hi,
|
|
|
|
|
L3 : a * n + n + (a + 1) = a * n + n + a + 1 := PlusAssoc (a * n + n) a 1,
|
|
|
|
|
L4 : a * n + n + a = a * n + (n + a) := Symm (PlusAssoc (a * n) n a),
|
|
|
|
|
L5 : a * n + n + (a + 1) = a * n + (n + a) + 1 := Subst L3 L4,
|
|
|
|
|
L6 : a * n + n + (a + 1) = a * n + (a + n) + 1 := Subst L5 (PlusComm n a),
|
|
|
|
|
L7 : a * n + (a + n) = a * n + a + n := PlusAssoc (a * n) a n,
|
|
|
|
|
L8 : a * n + n + (a + 1) = a * n + a + n + 1 := Subst L6 L7,
|
|
|
|
|
L9 : a * n + a = a * (n + 1) := Symm (MulSucc a n),
|
|
|
|
|
L10 : a * n + n + (a + 1) = a * (n + 1) + n + 1 := Subst L8 L9,
|
|
|
|
|
L11 : a * (n + 1) + n + 1 = a * (n + 1) + (n + 1) := Symm (PlusAssoc (a * (n + 1)) n 1)
|
|
|
|
|
in show (a + 1) * (n + 1) = a * (n + 1) + (n + 1),
|
|
|
|
|
Trans (Trans L2 L10) L11)
|
|
|
|
|
b.
|
|
|
|
|
|
|
|
|
|
Theorem OneMul (a : Nat) : 1 * a = a
|
|
|
|
|
:= Induction (show 1 * 0 = 0, Trivial)
|
|
|
|
|
(λ (n : Nat) (Hi : 1 * n = n),
|
|
|
|
|
let L1 : 1 * (n + 1) = 1 * n + 1 := MulSucc 1 n
|
|
|
|
|
in show 1 * (n + 1) = n + 1, Subst L1 Hi)
|
|
|
|
|
a.
|
|
|
|
|
|
|
|
|
|
Theorem MulOne (a : Nat) : a * 1 = a
|
|
|
|
|
:= Induction (show 0 * 1 = 0, Trivial)
|
|
|
|
|
(λ (n : Nat) (Hi : n * 1 = n),
|
|
|
|
|
let L1 : (n + 1) * 1 = n * 1 + 1 := SuccMul n 1
|
|
|
|
|
in show (n + 1) * 1 = n + 1, Subst L1 Hi)
|
|
|
|
|
a.
|
|
|
|
|
|
|
|
|
|
Theorem MulComm (a b : Nat) : a * b = b * a
|
|
|
|
|
:= Induction (show a * 0 = 0 * a, Trans (MulZero a) (Symm (ZeroMul a)))
|
|
|
|
|
(λ (n : Nat) (Hi : a * n = n * a),
|
|
|
|
|
let L1 : a * (n + 1) = a * n + a := MulSucc a n,
|
|
|
|
|
L2 : (n + 1) * a = n * a + a := SuccMul n a,
|
|
|
|
|
L3 : (n + 1) * a = a * n + a := Subst L2 (Symm Hi)
|
|
|
|
|
in show a * (n + 1) = (n + 1) * a, Trans L1 (Symm L3))
|
|
|
|
|
b.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Theorem Distribute (a b c : Nat) : a * (b + c) = a * b + a * c
|
|
|
|
|
:= Induction (let L1 : 0 * (b + c) = 0 := ZeroMul (b + c),
|
|
|
|
|
L2 : 0 * b + 0 * c = 0 + 0 := Subst (Subst (Refl (0 * b + 0 * c)) (ZeroMul b)) (ZeroMul c),
|
|
|
|
|
L3 : 0 + 0 = 0 := Trivial
|
|
|
|
|
in show 0 * (b + c) = 0 * b + 0 * c, Trans L1 (Symm (Trans L2 L3)))
|
|
|
|
|
(λ (n : Nat) (Hi : n * (b + c) = n * b + n * c),
|
|
|
|
|
let L1 : (n + 1) * (b + c) = n * (b + c) + (b + c) := SuccMul n (b + c),
|
|
|
|
|
L2 : (n + 1) * (b + c) = n * b + n * c + (b + c) := Subst L1 Hi,
|
|
|
|
|
L3 : n * b + n * c + (b + c) = n * b + n * c + b + c := PlusAssoc (n * b + n * c) b c,
|
|
|
|
|
L4 : n * b + n * c + b = n * b + (n * c + b) := Symm (PlusAssoc (n * b) (n * c) b),
|
|
|
|
|
L5 : n * b + n * c + b = n * b + (b + n * c) := Subst L4 (PlusComm (n * c) b),
|
|
|
|
|
L6 : n * b + (b + n * c) = n * b + b + n * c := PlusAssoc (n * b) b (n * c),
|
|
|
|
|
L7 : n * b + (b + n * c) = (n + 1) * b + n * c := Subst L6 (Symm (SuccMul n b)),
|
|
|
|
|
L8 : n * b + n * c + b = (n + 1) * b + n * c := Trans L5 L7,
|
|
|
|
|
L9 : n * b + n * c + (b + c) = (n + 1) * b + n * c + c := Subst L3 L8,
|
|
|
|
|
L10 : (n + 1) * b + n * c + c = (n + 1) * b + (n * c + c) := Symm (PlusAssoc ((n + 1) * b) (n * c) c),
|
|
|
|
|
L11 : (n + 1) * b + n * c + c = (n + 1) * b + (n + 1) * c := Subst L10 (Symm (SuccMul n c)),
|
|
|
|
|
L12 : n * b + n * c + (b + c) = (n + 1) * b + (n + 1) * c := Trans L9 L11
|
|
|
|
|
in show (n + 1) * (b + c) = (n + 1) * b + (n + 1) * c,
|
|
|
|
|
Trans L2 L12)
|
|
|
|
|
a.
|
|
|
|
|
|
|
|
|
|
Theorem Distribute2 (a b c : Nat) : (a + b) * c = a * c + b * c
|
|
|
|
|
:= let L1 : (a + b) * c = c * (a + b) := MulComm (a + b) c,
|
|
|
|
|
L2 : c * (a + b) = c * a + c * b := Distribute c a b,
|
|
|
|
|
L3 : (a + b) * c = c * a + c * b := Trans L1 L2
|
|
|
|
|
in Subst (Subst L3 (MulComm c a)) (MulComm c b).
|
|
|
|
|
|
|
|
|
|
Theorem MulAssoc (a b c : Nat) : a * (b * c) = a * b * c
|
|
|
|
|
:= Induction (let L1 : 0 * (b * c) = 0 := ZeroMul (b * c),
|
|
|
|
|
L2 : 0 * b * c = 0 * c := Subst (Refl (0 * b * c)) (ZeroMul b),
|
|
|
|
|
L3 : 0 * c = 0 := ZeroMul c
|
|
|
|
|
in show 0 * (b * c) = 0 * b * c, Trans L1 (Symm (Trans L2 L3)))
|
|
|
|
|
(λ (n : Nat) (Hi : n * (b * c) = n * b * c),
|
|
|
|
|
let L1 : (n + 1) * (b * c) = n * (b * c) + (b * c) := SuccMul n (b * c),
|
|
|
|
|
L2 : (n + 1) * (b * c) = n * b * c + (b * c) := Subst L1 Hi,
|
|
|
|
|
L3 : n * b * c + (b * c) = (n * b + b) * c := Symm (Distribute2 (n * b) b c),
|
|
|
|
|
L4 : n * b * c + (b * c) = (n + 1) * b * c := Subst L3 (Symm (SuccMul n b))
|
|
|
|
|
in show (n + 1) * (b * c) = (n + 1) * b * c, Trans L2 L4)
|
|
|
|
|
a.
|
2014-01-02 01:19:12 +00:00
|
|
|
|
|
2014-01-01 20:40:54 +00:00
|
|
|
|
SetOpaque ge true.
|
|
|
|
|
SetOpaque lt true.
|
|
|
|
|
SetOpaque gt true.
|
|
|
|
|
SetOpaque id true.
|
|
|
|
|
EndNamespace.
|