lean2/library/data/fintype.lean

212 lines
8.8 KiB
Text
Raw Normal View History

/-
Copyright (c) 2015 Leonardo de Moura. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Leonardo de Moura
Finite type (type class)
-/
import data.list data.bool
open list bool unit decidable option function
structure fintype [class] (A : Type) : Type :=
(elems : list A) (unique : nodup elems) (complete : ∀ a, a ∈ elems)
definition elements_of (A : Type) [h : fintype A] : list A :=
@fintype.elems A h
definition fintype_unit [instance] : fintype unit :=
fintype.mk [star] dec_trivial (λ u, match u with star := dec_trivial end)
definition fintype_bool [instance] : fintype bool :=
fintype.mk [ff, tt]
dec_trivial
(λ b, match b with | tt := dec_trivial | ff := dec_trivial end)
definition fintype_product [instance] {A B : Type} : Π [h₁ : fintype A] [h₂ : fintype B], fintype (A × B)
| (fintype.mk e₁ u₁ c₁) (fintype.mk e₂ u₂ c₂) :=
fintype.mk
(cross_product e₁ e₂)
(nodup_cross_product u₁ u₂)
(λ p,
match p with
(a, b) := mem_cross_product (c₁ a) (c₂ b)
end)
/- auxiliary function for finding 'a' s.t. f a ≠ g a -/
section find_discr
variables {A B : Type}
variable [h : decidable_eq B]
include h
definition find_discr (f g : A → B) : list A → option A
| [] := none
| (a::l) := if f a = g a then find_discr l else some a
theorem find_discr_nil (f g : A → B) : find_discr f g [] = none :=
rfl
theorem find_discr_cons_of_ne {f g : A → B} {a : A} (l : list A) : f a ≠ g a → find_discr f g (a::l) = some a :=
assume ne, if_neg ne
theorem find_discr_cons_of_eq {f g : A → B} {a : A} (l : list A) : f a = g a → find_discr f g (a::l) = find_discr f g l :=
assume eq, if_pos eq
theorem ne_of_find_discr_eq_some {f g : A → B} {a : A} : ∀ {l}, find_discr f g l = some a → f a ≠ g a
| [] e := by contradiction
| (x::l) e := by_cases
(λ h : f x = g x,
have aux : find_discr f g l = some a, by rewrite [find_discr_cons_of_eq l h at e]; exact e,
ne_of_find_discr_eq_some aux)
(λ h : f x ≠ g x,
have aux : some x = some a, by rewrite [find_discr_cons_of_ne l h at e]; exact e,
option.no_confusion aux (λ xeqa : x = a, eq.rec_on xeqa h))
theorem all_eq_of_find_discr_eq_none {f g : A → B} : ∀ {l}, find_discr f g l = none → ∀ a, a ∈ l → f a = g a
| [] e a i := absurd i !not_mem_nil
| (x::l) e a i := by_cases
(λ fx_eq_gx : f x = g x,
have aux : find_discr f g l = none, by rewrite [find_discr_cons_of_eq l fx_eq_gx at e]; exact e,
or.elim (eq_or_mem_of_mem_cons i)
(λ aeqx : a = x, by rewrite [-aeqx at fx_eq_gx]; exact fx_eq_gx)
(λ ainl : a ∈ l, all_eq_of_find_discr_eq_none aux a ainl))
(λ fx_ne_gx : f x ≠ g x,
by rewrite [find_discr_cons_of_ne l fx_ne_gx at e]; contradiction)
end find_discr
definition decidable_eq_fun [instance] {A B : Type} [h₁ : fintype A] [h₂ : decidable_eq B] : decidable_eq (A → B) :=
λ f g,
match h₁ with
| fintype.mk e u c :=
match find_discr f g e with
| some a := λ h : find_discr f g e = some a, inr (λ f_eq_g : f = g, absurd (by rewrite f_eq_g; reflexivity) (ne_of_find_discr_eq_some h))
| none := λ h : find_discr f g e = none, inl (show f = g, from funext (λ a : A, all_eq_of_find_discr_eq_none h a (c a)))
end rfl
end
section check_pred
variables {A : Type}
definition check_pred (p : A → Prop) [h : decidable_pred p] : list A → bool
| [] := tt
| (a::l) := if p a then check_pred l else ff
definition check_pred_cons_of_pos {p : A → Prop} [h : decidable_pred p] {a : A} (l : list A) : p a → check_pred p (a::l) = check_pred p l :=
assume pa, if_pos pa
definition check_pred_cons_of_neg {p : A → Prop} [h : decidable_pred p] {a : A} (l : list A) : ¬ p a → check_pred p (a::l) = ff :=
assume npa, if_neg npa
definition all_of_check_pred_eq_tt {p : A → Prop} [h : decidable_pred p] : ∀ {l : list A}, check_pred p l = tt → ∀ {a}, a ∈ l → p a
| [] eqtt a ainl := absurd ainl !not_mem_nil
| (b::l) eqtt a ainbl := by_cases
(λ pb : p b, or.elim (eq_or_mem_of_mem_cons ainbl)
(λ aeqb : a = b, by rewrite [aeqb]; exact pb)
(λ ainl : a ∈ l,
have eqtt₁ : check_pred p l = tt, by rewrite [check_pred_cons_of_pos _ pb at eqtt]; exact eqtt,
all_of_check_pred_eq_tt eqtt₁ ainl))
(λ npb : ¬ p b,
by rewrite [check_pred_cons_of_neg _ npb at eqtt]; exact (bool.no_confusion eqtt))
definition ex_of_check_pred_eq_ff {p : A → Prop} [h : decidable_pred p] : ∀ {l : list A}, check_pred p l = ff → ∃ w, ¬ p w
| [] eqtt := bool.no_confusion eqtt
| (a::l) eqtt := by_cases
(λ pa : p a,
have eqtt₁ : check_pred p l = ff, by rewrite [check_pred_cons_of_pos _ pa at eqtt]; exact eqtt,
ex_of_check_pred_eq_ff eqtt₁)
(λ npa : ¬ p a, exists.intro a npa)
end check_pred
definition decidable_forall_finite [instance] {A : Type} {p : A → Prop} [h₁ : fintype A] [h₂ : decidable_pred p]
: decidable (∀ x : A, p x) :=
match h₁ with
| fintype.mk e u c :=
match check_pred p e with
| tt := λ h : check_pred p e = tt, inl (λ a : A, all_of_check_pred_eq_tt h (c a))
| ff := λ h : check_pred p e = ff,
inr (λ n : (∀ x, p x),
obtain (a : A) (w : ¬ p a), from ex_of_check_pred_eq_ff h,
absurd (n a) w)
end rfl
end
definition decidable_exists_finite [instance] {A : Type} {p : A → Prop} [h₁ : fintype A] [h₂ : decidable_pred p]
: decidable (∃ x : A, p x) :=
match h₁ with
| fintype.mk e u c :=
match check_pred (λ a, ¬ p a) e with
| tt := λ h : check_pred (λ a, ¬ p a) e = tt, inr (λ ex : (∃ x, p x),
obtain x px, from ex,
begin
-- TODO(Leo): remove the following hack. This hack is needed to workaround a problem in
-- the method elaborator::elaborate_nested
apply absurd px,
apply all_of_check_pred_eq_tt h,
apply c x,
end)
| ff := λ h : check_pred (λ a, ¬ p a) e = ff, inl (
assert aux₁ : ∃ x, ¬¬p x, from ex_of_check_pred_eq_ff h,
obtain x nnpx, from aux₁, exists.intro x (not_not_elim nnpx))
end rfl
end
open list.as_type
-- Auxiliary function for returning a list with all elements of the type: (list.as_type l)
-- Remark ⟪s⟫ is notation for (list.as_type l)
-- We use this function to define the instance for (fintype ⟪s⟫)
private definition ltype_elems {A : Type} {s : list A} : Π {l : list A}, l ⊆ s → list ⟪s⟫
| [] h := []
| (a::l) h := lval a (h a !mem_cons) :: ltype_elems (sub_of_cons_sub h)
private theorem mem_of_mem_ltype_elems {A : Type} {a : A} {s : list A}
: Π {l : list A} {h : l ⊆ s} {m : a ∈ s}, mk a m ∈ ltype_elems h → a ∈ l
| [] h m lin := absurd lin !not_mem_nil
| (b::l) h m lin := or.elim (eq_or_mem_of_mem_cons lin)
(λ leq : mk a m = mk b (h b (mem_cons b l)),
as_type.no_confusion leq (λ aeqb em, by rewrite [aeqb]; exact !mem_cons))
(λ linl : mk a m ∈ ltype_elems (sub_of_cons_sub h),
have ainl : a ∈ l, from mem_of_mem_ltype_elems linl,
mem_cons_of_mem _ ainl)
private theorem nodup_ltype_elems {A : Type} {s : list A} : Π {l : list A} (d : nodup l) (h : l ⊆ s), nodup (ltype_elems h)
| [] d h := nodup_nil
| (a::l) d h :=
have d₁ : nodup l, from nodup_of_nodup_cons d,
have nainl : a ∉ l, from not_mem_of_nodup_cons d,
let h₁ : l ⊆ s := sub_of_cons_sub h in
have d₂ : nodup (ltype_elems h₁), from nodup_ltype_elems d₁ h₁,
have nin : mk a (h a (mem_cons a l)) ∉ ltype_elems h₁, from
assume ab, absurd (mem_of_mem_ltype_elems ab) nainl,
nodup_cons nin d₂
private theorem mem_ltype_elems {A : Type} {s : list A} {a : ⟪s⟫}
: Π {l : list A} (h : l ⊆ s), value a ∈ l → a ∈ ltype_elems h
| [] h vainl := absurd vainl !not_mem_nil
| (b::l) h vainbl := or.elim (eq_or_mem_of_mem_cons vainbl)
(λ vaeqb : value a = b,
begin
revert vaeqb h,
-- TODO(Leo): check why 'cases a with va, ma' produces an incorrect proof
eapply as_type.cases_on a,
intro va ma vaeqb,
rewrite -vaeqb, intro h,
apply mem_cons
end)
(λ vainl : value a ∈ l,
have s₁ : l ⊆ s, from sub_of_cons_sub h,
have aux : a ∈ ltype_elems (sub_of_cons_sub h), from mem_ltype_elems s₁ vainl,
mem_cons_of_mem _ aux)
definition fintype_list_as_type [instance] {A : Type} [h : decidable_eq A] {s : list A} : fintype ⟪s⟫ :=
let nds : list A := erase_dup s in
have sub₁ : nds ⊆ s, from erase_dup_sub s,
have sub₂ : s ⊆ nds, from sub_erase_dup s,
have dnds : nodup nds, from nodup_erase_dup s,
let e : list ⟪s⟫ := ltype_elems sub₁ in
fintype.mk
e
(nodup_ltype_elems dnds sub₁)
(λ a : ⟪s⟫, show a ∈ e, from
have vains : value a ∈ s, from is_member a,
have vainnds : value a ∈ nds, from sub₂ vains,
mem_ltype_elems sub₁ vainnds)