2014-11-29 05:56:13 +00:00
|
|
|
import logic data.nat.basic
|
|
|
|
open nat
|
|
|
|
|
|
|
|
inductive inftree (A : Type) : Type :=
|
2015-02-26 01:00:10 +00:00
|
|
|
| leaf : A → inftree A
|
|
|
|
| node : (nat → inftree A) → inftree A → inftree A
|
2014-11-29 05:56:13 +00:00
|
|
|
|
|
|
|
namespace inftree
|
|
|
|
inductive dsub {A : Type} : inftree A → inftree A → Prop :=
|
2015-02-26 01:00:10 +00:00
|
|
|
| intro₁ : Π (f : nat → inftree A) (a : nat) (t : inftree A), dsub (f a) (node f t)
|
|
|
|
| intro₂ : Π (f : nat → inftree A) (t : inftree A), dsub t (node f t)
|
2014-11-29 05:56:13 +00:00
|
|
|
|
|
|
|
definition dsub.node.acc {A : Type} (f : nat → inftree A) (hf : ∀a, acc dsub (f a))
|
|
|
|
(t : inftree A) (ht : acc dsub t) : acc dsub (node f t) :=
|
|
|
|
acc.intro (node f t) (λ (y : inftree A) (hlt : dsub y (node f t)),
|
|
|
|
begin
|
2015-03-06 02:07:06 +00:00
|
|
|
cases hlt,
|
2014-11-29 05:56:13 +00:00
|
|
|
apply (hf a),
|
|
|
|
apply ht
|
|
|
|
end)
|
|
|
|
|
|
|
|
end inftree
|