2015-07-06 18:13:24 +00:00
|
|
|
|
/-
|
|
|
|
|
Copyright (c) 2015 Microsoft Corporation. All rights reserved.
|
|
|
|
|
Released under Apache 2.0 license as described in the file LICENSE.
|
|
|
|
|
Authors: Leonardo de Moura
|
|
|
|
|
|
|
|
|
|
In the standard library we cannot assume the univalence axiom.
|
|
|
|
|
We say two types are equivalent if they are isomorphic.
|
|
|
|
|
-/
|
|
|
|
|
import data.sum data.nat
|
|
|
|
|
open function
|
|
|
|
|
|
2015-07-06 19:44:51 +00:00
|
|
|
|
structure equiv [class] (A B : Type) :=
|
2015-07-06 18:13:24 +00:00
|
|
|
|
(to_fun : A → B)
|
|
|
|
|
(inv : B → A)
|
|
|
|
|
(left_inv : left_inverse inv to_fun)
|
|
|
|
|
(right_inv : right_inverse inv to_fun)
|
|
|
|
|
|
|
|
|
|
namespace equiv
|
|
|
|
|
infix `≃`:50 := equiv
|
|
|
|
|
|
2015-07-06 19:44:51 +00:00
|
|
|
|
namespace ops
|
|
|
|
|
attribute equiv.to_fun [coercion]
|
|
|
|
|
definition inverse [reducible] {A B : Type} [h : A ≃ B] : B → A :=
|
|
|
|
|
λ b, @equiv.inv A B h b
|
|
|
|
|
postfix `⁻¹` := inverse
|
|
|
|
|
end ops
|
|
|
|
|
|
2015-07-06 18:13:24 +00:00
|
|
|
|
protected theorem refl [refl] (A : Type) : A ≃ A :=
|
|
|
|
|
mk (@id A) (@id A) (λ x, rfl) (λ x, rfl)
|
|
|
|
|
|
|
|
|
|
protected theorem symm [symm] {A B : Type} : A ≃ B → B ≃ A
|
|
|
|
|
| (mk f g h₁ h₂) := mk g f h₂ h₁
|
|
|
|
|
|
|
|
|
|
protected theorem trans [trans] {A B C : Type} : A ≃ B → B ≃ C → A ≃ C
|
|
|
|
|
| (mk f₁ g₁ l₁ r₁) (mk f₂ g₂ l₂ r₂) :=
|
|
|
|
|
mk (f₂ ∘ f₁) (g₁ ∘ g₂)
|
|
|
|
|
(show ∀ x, g₁ (g₂ (f₂ (f₁ x))) = x, by intros; rewrite [l₂, l₁])
|
|
|
|
|
(show ∀ x, f₂ (f₁ (g₁ (g₂ x))) = x, by intros; rewrite [r₁, r₂])
|
|
|
|
|
|
|
|
|
|
lemma false_equiv_empty : empty ≃ false :=
|
|
|
|
|
mk (λ e, empty.rec _ e) (λ h, false.rec _ h) (λ e, empty.rec _ e) (λ h, false.rec _ h)
|
|
|
|
|
|
|
|
|
|
lemma arrow_congr {A₁ B₁ A₂ B₂ : Type} : A₁ ≃ A₂ → B₁ ≃ B₂ → (A₁ → B₁) ≃ (A₂ → B₂)
|
|
|
|
|
| (mk f₁ g₁ l₁ r₁) (mk f₂ g₂ l₂ r₂) :=
|
|
|
|
|
mk
|
|
|
|
|
(λ (h : A₁ → B₁) (a : A₂), f₂ (h (g₁ a)))
|
|
|
|
|
(λ (h : A₂ → B₂) (a : A₁), g₂ (h (f₁ a)))
|
|
|
|
|
(λ h, funext (λ a, by rewrite [l₁, l₂]))
|
|
|
|
|
(λ h, funext (λ a, by rewrite [r₁, r₂]))
|
|
|
|
|
|
|
|
|
|
section
|
|
|
|
|
open unit
|
|
|
|
|
lemma arrow_unit_equiv_unit (A : Type) : (A → unit) ≃ unit :=
|
|
|
|
|
mk (λ f, star) (λ u, (λ f, star))
|
|
|
|
|
(λ f, funext (λ x, by cases (f x); reflexivity))
|
|
|
|
|
(λ u, by cases u; reflexivity)
|
|
|
|
|
|
|
|
|
|
lemma unit_arrow_equiv (A : Type) : (unit → A) ≃ A :=
|
|
|
|
|
mk (λ f, f star) (λ a, (λ u, a))
|
|
|
|
|
(λ f, funext (λ x, by cases x; reflexivity))
|
|
|
|
|
(λ u, rfl)
|
|
|
|
|
|
|
|
|
|
lemma empty_arrow_equiv_unit (A : Type) : (empty → A) ≃ unit :=
|
|
|
|
|
mk (λ f, star) (λ u, λ e, empty.rec _ e)
|
|
|
|
|
(λ f, funext (λ x, empty.rec _ x))
|
|
|
|
|
(λ u, by cases u; reflexivity)
|
|
|
|
|
|
|
|
|
|
lemma false_arrow_equiv_unit (A : Type) : (false → A) ≃ unit :=
|
|
|
|
|
calc (false → A) ≃ (empty → A) : arrow_congr false_equiv_empty !equiv.refl
|
|
|
|
|
... ≃ unit : empty_arrow_equiv_unit
|
|
|
|
|
end
|
|
|
|
|
|
|
|
|
|
lemma prod_congr {A₁ B₁ A₂ B₂ : Type} : A₁ ≃ A₂ → B₁ ≃ B₂ → (A₁ × B₁) ≃ (A₂ × B₂)
|
|
|
|
|
| (mk f₁ g₁ l₁ r₁) (mk f₂ g₂ l₂ r₂) :=
|
|
|
|
|
mk
|
|
|
|
|
(λ p, match p with (a₁, b₁) := (f₁ a₁, f₂ b₁) end)
|
|
|
|
|
(λ p, match p with (a₂, b₂) := (g₁ a₂, g₂ b₂) end)
|
|
|
|
|
(λ p, begin cases p, esimp, rewrite [l₁, l₂] end)
|
|
|
|
|
(λ p, begin cases p, esimp, rewrite [r₁, r₂] end)
|
|
|
|
|
|
|
|
|
|
lemma prod_comm (A B : Type) : (A × B) ≃ (B × A) :=
|
|
|
|
|
mk (λ p, match p with (a, b) := (b, a) end)
|
|
|
|
|
(λ p, match p with (b, a) := (a, b) end)
|
|
|
|
|
(λ p, begin cases p, esimp end)
|
|
|
|
|
(λ p, begin cases p, esimp end)
|
|
|
|
|
|
|
|
|
|
lemma prod_assoc (A B C : Type) : ((A × B) × C) ≃ (A × (B × C)) :=
|
|
|
|
|
mk (λ t, match t with ((a, b), c) := (a, (b, c)) end)
|
|
|
|
|
(λ t, match t with (a, (b, c)) := ((a, b), c) end)
|
|
|
|
|
(λ t, begin cases t with ab c, cases ab, esimp end)
|
|
|
|
|
(λ t, begin cases t with a bc, cases bc, esimp end)
|
|
|
|
|
|
|
|
|
|
section
|
|
|
|
|
open unit prod.ops
|
|
|
|
|
lemma prod_unit_right (A : Type) : (A × unit) ≃ A :=
|
|
|
|
|
mk (λ p, p.1)
|
|
|
|
|
(λ a, (a, star))
|
|
|
|
|
(λ p, begin cases p with a u, cases u, esimp end)
|
|
|
|
|
(λ a, rfl)
|
|
|
|
|
|
|
|
|
|
lemma prod_unit_left (A : Type) : (unit × A) ≃ A :=
|
|
|
|
|
calc (unit × A) ≃ (A × unit) : prod_comm
|
|
|
|
|
... ≃ A : prod_unit_right
|
|
|
|
|
|
|
|
|
|
lemma prod_empty_right (A : Type) : (A × empty) ≃ empty :=
|
|
|
|
|
mk (λ p, empty.rec _ p.2) (λ e, empty.rec _ e) (λ p, empty.rec _ p.2) (λ e, empty.rec _ e)
|
|
|
|
|
|
|
|
|
|
lemma prod_empty_left (A : Type) : (empty × A) ≃ empty :=
|
|
|
|
|
calc (empty × A) ≃ (A × empty) : prod_comm
|
|
|
|
|
... ≃ empty : prod_empty_right
|
|
|
|
|
end
|
|
|
|
|
|
|
|
|
|
section
|
|
|
|
|
open sum
|
|
|
|
|
lemma sum_congr {A₁ B₁ A₂ B₂ : Type} : A₁ ≃ A₂ → B₁ ≃ B₂ → (A₁ + B₁) ≃ (A₂ + B₂)
|
|
|
|
|
| (mk f₁ g₁ l₁ r₁) (mk f₂ g₂ l₂ r₂) :=
|
|
|
|
|
mk
|
|
|
|
|
(λ s, match s with inl a₁ := inl (f₁ a₁) | inr b₁ := inr (f₂ b₁) end)
|
|
|
|
|
(λ s, match s with inl a₂ := inl (g₁ a₂) | inr b₂ := inr (g₂ b₂) end)
|
|
|
|
|
(λ s, begin cases s, {esimp, rewrite l₁}, {esimp, rewrite l₂} end)
|
|
|
|
|
(λ s, begin cases s, {esimp, rewrite r₁}, {esimp, rewrite r₂} end)
|
|
|
|
|
|
|
|
|
|
open bool unit
|
|
|
|
|
lemma bool_equiv_unit_sum_unit : bool ≃ (unit + unit) :=
|
|
|
|
|
mk (λ b, match b with tt := inl star | ff := inr star end)
|
|
|
|
|
(λ s, match s with inl star := tt | inr star := ff end)
|
|
|
|
|
(λ b, begin cases b, esimp, esimp end)
|
|
|
|
|
(λ s, begin cases s with u u, {cases u, esimp}, {cases u, esimp} end)
|
|
|
|
|
|
|
|
|
|
lemma sum_comm (A B : Type) : (A + B) ≃ (B + A) :=
|
|
|
|
|
mk (λ s, match s with inl a := inr a | inr b := inl b end)
|
|
|
|
|
(λ s, match s with inl b := inr b | inr a := inl a end)
|
|
|
|
|
(λ s, begin cases s, esimp, esimp end)
|
|
|
|
|
(λ s, begin cases s, esimp, esimp end)
|
|
|
|
|
|
|
|
|
|
lemma sum_assoc (A B C : Type) : ((A + B) + C) ≃ (A + (B + C)) :=
|
|
|
|
|
mk (λ s, match s with inl (inl a) := inl a | inl (inr b) := inr (inl b) | inr c := inr (inr c) end)
|
|
|
|
|
(λ s, match s with inl a := inl (inl a) | inr (inl b) := inl (inr b) | inr (inr c) := inr c end)
|
|
|
|
|
(λ s, begin cases s with ab c, cases ab, repeat esimp end)
|
|
|
|
|
(λ s, begin cases s with a bc, esimp, cases bc, repeat esimp end)
|
|
|
|
|
|
|
|
|
|
lemma sum_empty_right (A : Type) : (A + empty) ≃ A :=
|
|
|
|
|
mk (λ s, match s with inl a := a | inr e := empty.rec _ e end)
|
|
|
|
|
(λ a, inl a)
|
|
|
|
|
(λ s, begin cases s with a e, esimp, exact empty.rec _ e end)
|
|
|
|
|
(λ a, rfl)
|
|
|
|
|
|
|
|
|
|
lemma sum_empty_left (A : Type) : (empty + A) ≃ A :=
|
|
|
|
|
calc (empty + A) ≃ (A + empty) : sum_comm
|
|
|
|
|
... ≃ A : sum_empty_right
|
|
|
|
|
end
|
|
|
|
|
|
|
|
|
|
section
|
|
|
|
|
open prod.ops
|
|
|
|
|
lemma arrow_prod_equiv_prod_arrow (A B C : Type) : (C → A × B) ≃ ((C → A) × (C → B)) :=
|
|
|
|
|
mk (λ f, (λ c, (f c).1, λ c, (f c).2))
|
|
|
|
|
(λ p, λ c, (p.1 c, p.2 c))
|
|
|
|
|
(λ f, funext (λ c, begin esimp, cases f c, esimp end))
|
|
|
|
|
(λ p, begin cases p, esimp end)
|
|
|
|
|
|
|
|
|
|
lemma arrow_arrow_equiv_prod_arrow (A B C : Type) : (A → B → C) ≃ (A × B → C) :=
|
|
|
|
|
mk (λ f, λ p, f p.1 p.2)
|
|
|
|
|
(λ f, λ a b, f (a, b))
|
|
|
|
|
(λ f, rfl)
|
|
|
|
|
(λ f, funext (λ p, begin cases p, esimp end))
|
|
|
|
|
|
|
|
|
|
open sum
|
|
|
|
|
lemma sum_arrow_equiv_prod_arrow (A B C : Type) : ((A + B) → C) ≃ ((A → C) × (B → C)) :=
|
|
|
|
|
mk (λ f, (λ a, f (inl a), λ b, f (inr b)))
|
|
|
|
|
(λ p, (λ s, match s with inl a := p.1 a | inr b := p.2 b end))
|
|
|
|
|
(λ f, funext (λ s, begin cases s, esimp, esimp end))
|
|
|
|
|
(λ p, begin cases p, esimp end)
|
|
|
|
|
|
|
|
|
|
lemma sum_prod_distrib (A B C : Type) : ((A + B) × C) ≃ ((A × C) + (B × C)) :=
|
|
|
|
|
mk (λ p, match p with (inl a, c) := inl (a, c) | (inr b, c) := inr (b, c) end)
|
|
|
|
|
(λ s, match s with inl (a, c) := (inl a, c) | inr (b, c) := (inr b, c) end)
|
|
|
|
|
(λ p, begin cases p with ab c, cases ab, repeat esimp end)
|
|
|
|
|
(λ s, begin cases s with ac bc, cases ac, esimp, cases bc, esimp end)
|
|
|
|
|
|
|
|
|
|
lemma prod_sum_distrib (A B C : Type) : (A × (B + C)) ≃ ((A × B) + (A × C)) :=
|
|
|
|
|
calc (A × (B + C)) ≃ ((B + C) × A) : prod_comm
|
|
|
|
|
... ≃ ((B × A) + (C × A)) : sum_prod_distrib
|
|
|
|
|
... ≃ ((A × B) + (A × C)) : sum_congr !prod_comm !prod_comm
|
|
|
|
|
end
|
|
|
|
|
|
|
|
|
|
section
|
|
|
|
|
open sum nat unit prod.ops
|
|
|
|
|
lemma nat_equiv_nat_sum_unit : nat ≃ (nat + unit) :=
|
|
|
|
|
mk (λ n, match n with 0 := inr star | succ a := inl a end)
|
|
|
|
|
(λ s, match s with inl n := succ n | inr star := zero end)
|
|
|
|
|
(λ n, begin cases n, repeat esimp end)
|
|
|
|
|
(λ s, begin cases s with a u, esimp, {cases u, esimp} end)
|
|
|
|
|
|
|
|
|
|
lemma nat_sum_unit_equiv_nat : (nat + unit) ≃ nat :=
|
|
|
|
|
equiv.symm nat_equiv_nat_sum_unit
|
|
|
|
|
|
|
|
|
|
lemma nat_prod_nat_equiv_nat : (nat × nat) ≃ nat :=
|
|
|
|
|
mk (λ p, mkpair p.1 p.2)
|
|
|
|
|
(λ n, unpair n)
|
|
|
|
|
(λ p, begin cases p, apply unpair_mkpair end)
|
|
|
|
|
(λ n, mkpair_unpair n)
|
|
|
|
|
|
|
|
|
|
lemma nat_sum_bool_equiv_nat : (nat + bool) ≃ nat :=
|
|
|
|
|
calc (nat + bool) ≃ (nat + (unit + unit)) : sum_congr !equiv.refl bool_equiv_unit_sum_unit
|
|
|
|
|
... ≃ ((nat + unit) + unit) : sum_assoc
|
|
|
|
|
... ≃ (nat + unit) : sum_congr nat_sum_unit_equiv_nat !equiv.refl
|
|
|
|
|
... ≃ nat : nat_sum_unit_equiv_nat
|
|
|
|
|
|
|
|
|
|
open decidable
|
|
|
|
|
lemma nat_sum_nat_equiv_nat : (nat + nat) ≃ nat :=
|
|
|
|
|
mk (λ s, match s with inl n := 2*n | inr n := 2*n+1 end)
|
|
|
|
|
(λ n, if even n then inl (n div 2) else inr ((n - 1) div 2))
|
|
|
|
|
(λ s, begin
|
|
|
|
|
have two_gt_0 : 2 > 0, from dec_trivial,
|
|
|
|
|
cases s,
|
|
|
|
|
{esimp, rewrite [if_pos (even_two_mul _), mul_div_cancel_left _ two_gt_0]},
|
|
|
|
|
{esimp, rewrite [if_neg (not_even_two_mul_plus_one _), add_sub_cancel, mul_div_cancel_left _ two_gt_0]}
|
|
|
|
|
end)
|
|
|
|
|
(λ n, by_cases
|
|
|
|
|
(λ h : even n, begin rewrite [if_pos h], esimp, rewrite [mul_div_cancel' (dvd_of_even h)] end)
|
|
|
|
|
(λ h : ¬ even n,
|
|
|
|
|
begin
|
|
|
|
|
rewrite [if_neg h], esimp,
|
|
|
|
|
cases n,
|
|
|
|
|
{exact absurd even_zero h},
|
|
|
|
|
{rewrite [-add_one, add_sub_cancel,
|
|
|
|
|
mul_div_cancel' (dvd_of_even (even_of_odd_succ (odd_of_not_even h)))]}
|
|
|
|
|
end))
|
|
|
|
|
end
|
2015-07-06 19:17:57 +00:00
|
|
|
|
|
|
|
|
|
section
|
|
|
|
|
open decidable
|
|
|
|
|
definition decidable_eq_of_equiv {A B : Type} [h : decidable_eq A] : A ≃ B → decidable_eq B
|
|
|
|
|
| (mk f g l r) :=
|
|
|
|
|
take b₁ b₂, match h (g b₁) (g b₂) with
|
|
|
|
|
| inl he := inl (assert aux : f (g b₁) = f (g b₂), from congr_arg f he,
|
|
|
|
|
begin rewrite *r at aux, exact aux end)
|
|
|
|
|
| inr hn := inr (λ b₁eqb₂, by subst b₁eqb₂; exact absurd rfl hn)
|
|
|
|
|
end
|
|
|
|
|
end
|
|
|
|
|
|
|
|
|
|
definition inhabited_of_equiv {A B : Type} [h : inhabited A] : A ≃ B → inhabited B
|
|
|
|
|
| (mk f g l r) := inhabited.mk (f (inhabited.value h))
|
2015-07-06 19:44:51 +00:00
|
|
|
|
|
|
|
|
|
section
|
|
|
|
|
open subtype
|
|
|
|
|
override equiv.ops
|
|
|
|
|
definition subtype_equiv_of_subtype {A B : Type} {p : A → Prop} : A ≃ B → {a : A | p a} ≃ {b : B | p (b⁻¹)}
|
|
|
|
|
| (mk f g l r) :=
|
|
|
|
|
mk (λ s, match s with tag v h := tag (f v) (eq.rec_on (eq.symm (l v)) h) end)
|
|
|
|
|
(λ s, match s with tag v h := tag (g v) (eq.rec_on (eq.symm (r v)) h) end)
|
|
|
|
|
(λ s, begin cases s, esimp, congruence, rewrite l, reflexivity end)
|
|
|
|
|
(λ s, begin cases s, esimp, congruence, rewrite r, reflexivity end)
|
|
|
|
|
end
|
2015-07-06 18:13:24 +00:00
|
|
|
|
end equiv
|