2014-12-15 15:05:44 -05:00
|
|
|
|
/-
|
|
|
|
|
Copyright (c) 2014 Microsoft Corporation. All rights reserved.
|
|
|
|
|
Released under Apache 2.0 license as described in the file LICENSE.
|
2014-12-12 13:20:27 -08:00
|
|
|
|
|
2014-12-15 15:05:44 -05:00
|
|
|
|
Module: logic.connectives
|
|
|
|
|
Authors: Jeremy Avigad, Leonardo de Moura
|
|
|
|
|
|
2014-12-15 16:13:04 -05:00
|
|
|
|
The propositional connectives. See also init.datatypes and init.logic.
|
2014-12-15 15:05:44 -05:00
|
|
|
|
-/
|
2014-12-12 13:20:27 -08:00
|
|
|
|
|
|
|
|
|
variables {a b c d : Prop}
|
|
|
|
|
|
2014-12-15 15:05:44 -05:00
|
|
|
|
/- implies -/
|
|
|
|
|
|
|
|
|
|
definition imp (a b : Prop) : Prop := a → b
|
|
|
|
|
|
2014-12-12 13:20:27 -08:00
|
|
|
|
theorem mt (H1 : a → b) (H2 : ¬b) : ¬a :=
|
|
|
|
|
assume Ha : a, absurd (H1 Ha) H2
|
|
|
|
|
|
2014-12-15 15:05:44 -05:00
|
|
|
|
/- false -/
|
|
|
|
|
|
|
|
|
|
theorem false.elim {c : Prop} (H : false) : c :=
|
2014-12-12 13:20:27 -08:00
|
|
|
|
false.rec c H
|
|
|
|
|
|
2014-12-15 15:05:44 -05:00
|
|
|
|
/- not -/
|
2014-12-12 13:20:27 -08:00
|
|
|
|
|
2014-12-15 15:05:44 -05:00
|
|
|
|
theorem not.elim (H1 : ¬a) (H2 : a) : false := H1 H2
|
2014-12-12 13:20:27 -08:00
|
|
|
|
|
2014-12-15 15:05:44 -05:00
|
|
|
|
theorem not.intro (H : a → false) : ¬a := H
|
2014-12-12 13:20:27 -08:00
|
|
|
|
|
|
|
|
|
theorem not_not_intro (Ha : a) : ¬¬a :=
|
|
|
|
|
assume Hna : ¬a, absurd Ha Hna
|
|
|
|
|
|
2014-12-15 15:05:44 -05:00
|
|
|
|
theorem not_not_of_not_implies (H : ¬(a → b)) : ¬¬a :=
|
2014-12-12 13:20:27 -08:00
|
|
|
|
assume Hna : ¬a, absurd (assume Ha : a, absurd Ha Hna) H
|
|
|
|
|
|
2014-12-15 15:05:44 -05:00
|
|
|
|
theorem not_of_not_implies (H : ¬(a → b)) : ¬b :=
|
2014-12-12 13:20:27 -08:00
|
|
|
|
assume Hb : b, absurd (assume Ha : a, Hb) H
|
|
|
|
|
|
|
|
|
|
theorem not_not_em : ¬¬(a ∨ ¬a) :=
|
|
|
|
|
assume not_em : ¬(a ∨ ¬a),
|
2014-12-15 15:05:44 -05:00
|
|
|
|
have Hnp : ¬a, from
|
|
|
|
|
assume Hp : a, absurd (or.inl Hp) not_em,
|
|
|
|
|
absurd (or.inr Hnp) not_em
|
|
|
|
|
|
|
|
|
|
/- and -/
|
|
|
|
|
|
|
|
|
|
definition not_and_of_not_left (b : Prop) (Hna : ¬a) : ¬(a ∧ b) :=
|
|
|
|
|
assume H : a ∧ b, absurd (and.elim_left H) Hna
|
|
|
|
|
|
|
|
|
|
definition not_and_of_not_right (a : Prop) {b : Prop} (Hnb : ¬b) : ¬(a ∧ b) :=
|
|
|
|
|
assume H : a ∧ b, absurd (and.elim_right H) Hnb
|
|
|
|
|
|
|
|
|
|
theorem and.swap (H : a ∧ b) : b ∧ a :=
|
|
|
|
|
and.intro (and.elim_right H) (and.elim_left H)
|
|
|
|
|
|
|
|
|
|
theorem and_of_and_of_imp_of_imp (H₁ : a ∧ b) (H₂ : a → c) (H₃ : b → d) : c ∧ d :=
|
|
|
|
|
and.elim H₁ (assume Ha : a, assume Hb : b, and.intro (H₂ Ha) (H₃ Hb))
|
|
|
|
|
|
|
|
|
|
theorem and_of_and_of_imp_left (H₁ : a ∧ c) (H : a → b) : b ∧ c :=
|
|
|
|
|
and.elim H₁ (assume Ha : a, assume Hc : c, and.intro (H Ha) Hc)
|
|
|
|
|
|
|
|
|
|
theorem and_of_and_of_imp_right (H₁ : c ∧ a) (H : a → b) : c ∧ b :=
|
|
|
|
|
and.elim H₁ (assume Hc : c, assume Ha : a, and.intro Hc (H Ha))
|
|
|
|
|
|
|
|
|
|
theorem and.comm : a ∧ b ↔ b ∧ a :=
|
|
|
|
|
iff.intro (λH, and.swap H) (λH, and.swap H)
|
|
|
|
|
|
|
|
|
|
theorem and.assoc : (a ∧ b) ∧ c ↔ a ∧ (b ∧ c) :=
|
|
|
|
|
iff.intro
|
|
|
|
|
(assume H, and.intro
|
|
|
|
|
(and.elim_left (and.elim_left H))
|
|
|
|
|
(and.intro (and.elim_right (and.elim_left H)) (and.elim_right H)))
|
|
|
|
|
(assume H, and.intro
|
|
|
|
|
(and.intro (and.elim_left H) (and.elim_left (and.elim_right H)))
|
|
|
|
|
(and.elim_right (and.elim_right H)))
|
|
|
|
|
|
|
|
|
|
/- or -/
|
|
|
|
|
|
|
|
|
|
definition not_or (Hna : ¬a) (Hnb : ¬b) : ¬(a ∨ b) :=
|
|
|
|
|
assume H : a ∨ b, or.rec_on H
|
|
|
|
|
(assume Ha, absurd Ha Hna)
|
|
|
|
|
(assume Hb, absurd Hb Hnb)
|
|
|
|
|
|
|
|
|
|
theorem or_of_or_of_imp_of_imp (H₁ : a ∨ b) (H₂ : a → c) (H₃ : b → d) : c ∨ d :=
|
|
|
|
|
or.elim H₁
|
|
|
|
|
(assume Ha : a, or.inl (H₂ Ha))
|
|
|
|
|
(assume Hb : b, or.inr (H₃ Hb))
|
|
|
|
|
|
|
|
|
|
theorem or_of_or_of_imp_left (H₁ : a ∨ c) (H : a → b) : b ∨ c :=
|
|
|
|
|
or.elim H₁
|
|
|
|
|
(assume H₂ : a, or.inl (H H₂))
|
|
|
|
|
(assume H₂ : c, or.inr H₂)
|
|
|
|
|
|
|
|
|
|
theorem or_of_or_of_imp_right (H₁ : c ∨ a) (H : a → b) : c ∨ b :=
|
|
|
|
|
or.elim H₁
|
|
|
|
|
(assume H₂ : c, or.inl H₂)
|
|
|
|
|
(assume H₂ : a, or.inr (H H₂))
|
|
|
|
|
|
|
|
|
|
theorem or.elim3 (H : a ∨ b ∨ c) (Ha : a → d) (Hb : b → d) (Hc : c → d) : d :=
|
|
|
|
|
or.elim H Ha (assume H₂, or.elim H₂ Hb Hc)
|
|
|
|
|
|
|
|
|
|
theorem or_resolve_right (H₁ : a ∨ b) (H₂ : ¬a) : b :=
|
|
|
|
|
or.elim H₁ (assume Ha, absurd Ha H₂) (assume Hb, Hb)
|
|
|
|
|
|
|
|
|
|
theorem or_resolve_left (H₁ : a ∨ b) (H₂ : ¬b) : a :=
|
|
|
|
|
or.elim H₁ (assume Ha, Ha) (assume Hb, absurd Hb H₂)
|
|
|
|
|
|
|
|
|
|
theorem or.swap (H : a ∨ b) : b ∨ a :=
|
|
|
|
|
or.elim H (assume Ha, or.inr Ha) (assume Hb, or.inl Hb)
|
|
|
|
|
|
|
|
|
|
theorem or.comm : a ∨ b ↔ b ∨ a :=
|
|
|
|
|
iff.intro (λH, or.swap H) (λH, or.swap H)
|
|
|
|
|
|
|
|
|
|
theorem or.assoc : (a ∨ b) ∨ c ↔ a ∨ (b ∨ c) :=
|
|
|
|
|
iff.intro
|
|
|
|
|
(assume H, or.elim H
|
|
|
|
|
(assume H₁, or.elim H₁
|
|
|
|
|
(assume Ha, or.inl Ha)
|
|
|
|
|
(assume Hb, or.inr (or.inl Hb)))
|
|
|
|
|
(assume Hc, or.inr (or.inr Hc)))
|
|
|
|
|
(assume H, or.elim H
|
|
|
|
|
(assume Ha, (or.inl (or.inl Ha)))
|
|
|
|
|
(assume H₁, or.elim H₁
|
|
|
|
|
(assume Hb, or.inl (or.inr Hb))
|
|
|
|
|
(assume Hc, or.inr Hc)))
|
|
|
|
|
|
|
|
|
|
/- iff -/
|
|
|
|
|
|
|
|
|
|
definition iff.def : (a ↔ b) = ((a → b) ∧ (b → a)) :=
|
|
|
|
|
!eq.refl
|
|
|
|
|
|
|
|
|
|
/- exists_unique -/
|
2014-12-12 13:20:27 -08:00
|
|
|
|
|
|
|
|
|
definition exists_unique {A : Type} (p : A → Prop) :=
|
|
|
|
|
∃x, p x ∧ ∀y, p y → y = x
|
|
|
|
|
|
|
|
|
|
notation `∃!` binders `,` r:(scoped P, exists_unique P) := r
|
|
|
|
|
|
2014-12-15 15:05:44 -05:00
|
|
|
|
theorem exists_unique.intro {A : Type} {p : A → Prop} (w : A) (H1 : p w) (H2 : ∀y, p y → y = w) :
|
|
|
|
|
∃!x, p x :=
|
2014-12-15 19:05:03 -08:00
|
|
|
|
exists.intro w (and.intro H1 H2)
|
2014-12-12 13:20:27 -08:00
|
|
|
|
|
2014-12-15 15:05:44 -05:00
|
|
|
|
theorem exists_unique.elim {A : Type} {p : A → Prop} {b : Prop}
|
|
|
|
|
(H2 : ∃!x, p x) (H1 : ∀x, p x → (∀y, p y → y = x) → b) : b :=
|
2014-12-12 13:20:27 -08:00
|
|
|
|
obtain w Hw, from H2,
|
|
|
|
|
H1 w (and.elim_left Hw) (and.elim_right Hw)
|
2014-12-12 13:50:53 -08:00
|
|
|
|
|
2014-12-15 15:05:44 -05:00
|
|
|
|
/- if-then-else -/
|
|
|
|
|
|
2014-12-12 13:50:53 -08:00
|
|
|
|
section
|
|
|
|
|
open eq.ops
|
|
|
|
|
|
|
|
|
|
variables {A : Type} {c₁ c₂ : Prop}
|
|
|
|
|
|
|
|
|
|
definition if_true (t e : A) : (if true then t else e) = t :=
|
|
|
|
|
if_pos trivial
|
|
|
|
|
|
|
|
|
|
definition if_false (t e : A) : (if false then t else e) = e :=
|
|
|
|
|
if_neg not_false
|
|
|
|
|
|
2014-12-15 15:05:44 -05:00
|
|
|
|
theorem if_congr_cond [H₁ : decidable c₁] [H₂ : decidable c₂] (Heq : c₁ ↔ c₂) (t e : A) :
|
|
|
|
|
(if c₁ then t else e) = (if c₂ then t else e) :=
|
2014-12-12 13:50:53 -08:00
|
|
|
|
decidable.rec_on H₁
|
|
|
|
|
(λ Hc₁ : c₁, decidable.rec_on H₂
|
|
|
|
|
(λ Hc₂ : c₂, if_pos Hc₁ ⬝ (if_pos Hc₂)⁻¹)
|
|
|
|
|
(λ Hnc₂ : ¬c₂, absurd (iff.elim_left Heq Hc₁) Hnc₂))
|
|
|
|
|
(λ Hnc₁ : ¬c₁, decidable.rec_on H₂
|
|
|
|
|
(λ Hc₂ : c₂, absurd (iff.elim_right Heq Hc₂) Hnc₁)
|
|
|
|
|
(λ Hnc₂ : ¬c₂, if_neg Hnc₁ ⬝ (if_neg Hnc₂)⁻¹))
|
|
|
|
|
|
|
|
|
|
theorem if_congr_aux [H₁ : decidable c₁] [H₂ : decidable c₂] {t₁ t₂ e₁ e₂ : A}
|
2014-12-15 15:05:44 -05:00
|
|
|
|
(Hc : c₁ ↔ c₂) (Ht : t₁ = t₂) (He : e₁ = e₂) :
|
|
|
|
|
(if c₁ then t₁ else e₁) = (if c₂ then t₂ else e₂) :=
|
|
|
|
|
Ht ▸ He ▸ (if_congr_cond Hc t₁ e₁)
|
2014-12-12 13:50:53 -08:00
|
|
|
|
|
2014-12-15 15:05:44 -05:00
|
|
|
|
theorem if_congr [H₁ : decidable c₁] {t₁ t₂ e₁ e₂ : A} (Hc : c₁ ↔ c₂) (Ht : t₁ = t₂)
|
|
|
|
|
(He : e₁ = e₂) :
|
2014-12-15 19:17:51 -08:00
|
|
|
|
(if c₁ then t₁ else e₁) = (@ite c₂ (decidable_of_decidable_of_iff H₁ Hc) A t₂ e₂) :=
|
|
|
|
|
have H2 [visible] : decidable c₂, from (decidable_of_decidable_of_iff H₁ Hc),
|
2014-12-12 13:50:53 -08:00
|
|
|
|
if_congr_aux Hc Ht He
|
|
|
|
|
end
|