2014-01-05 20:05:08 +00:00
|
|
|
import cast
|
2013-12-24 06:04:19 +00:00
|
|
|
|
2014-01-05 20:05:08 +00:00
|
|
|
variables A A' B B' : Type
|
|
|
|
variable x : A
|
2014-01-06 03:10:21 +00:00
|
|
|
eval cast (refl A) x
|
|
|
|
eval x = (cast (refl A) x)
|
2014-01-05 20:05:08 +00:00
|
|
|
variable b : B
|
|
|
|
definition f (x : A) : B := b
|
|
|
|
axiom H : (A -> B) = (A' -> B)
|
|
|
|
variable a' : A'
|
|
|
|
eval (cast H f) a'
|
|
|
|
axiom H2 : (A -> B) = (A' -> B')
|
|
|
|
definition g (x : B') : Nat := 0
|
|
|
|
eval g ((cast H2 f) a')
|
|
|
|
check g ((cast H2 f) a')
|
2013-09-07 03:45:26 +00:00
|
|
|
|
2014-01-05 20:05:08 +00:00
|
|
|
eval (cast H2 f) a'
|
2013-09-07 03:45:26 +00:00
|
|
|
|
2014-01-05 20:05:08 +00:00
|
|
|
variables A1 A2 A3 : Type
|
|
|
|
axiom Ha : A1 = A2
|
|
|
|
axiom Hb : A2 = A3
|
|
|
|
variable a : A1
|
|
|
|
eval (cast Hb (cast Ha a))
|
|
|
|
check (cast Hb (cast Ha a))
|