fix(tests/lean/hott): adjust tests to reflect changes in the HoTT library

This commit is contained in:
Leonardo de Moura 2015-02-26 10:51:19 -08:00
parent f513538631
commit 0b48f406f9
4 changed files with 20 additions and 19 deletions

View file

@ -24,27 +24,28 @@ namespace pi
/- Now we show how these things compute. -/
definition apD10_path_pi [H : funext] (h : f g) : apD10 (eq_of_homotopy h) h :=
definition apD10_path_pi (H : funext) (h : f g) : apD10 (eq_of_homotopy h) h :=
apD10 (retr apD10 h)
definition path_pi_eta [H : funext] (p : f = g) : eq_of_homotopy (apD10 p) = p :=
definition path_pi_eta (H : funext) (p : f = g) : eq_of_homotopy (apD10 p) = p :=
sect apD10 p
definition path_pi_idp [H : funext] : eq_of_homotopy (λx : A, refl (f x)) = refl f :=
!path_pi_eta
print classes
definition path_pi_idp (H : funext) : eq_of_homotopy (λx : A, refl (f x)) = refl f :=
path_pi_eta H _
/- The identification of the path space of a dependent function space, up to equivalence, is of course just funext. -/
definition path_equiv_homotopy [H : funext] (f g : Πx, B x) : (f = g) ≃ (f g) :=
equiv.mk _ !funext.elim
definition path_equiv_homotopy (H : funext) (f g : Πx, B x) : (f = g) ≃ (f g) :=
equiv.mk _ !is_equiv_apD
definition is_equiv_path_pi [instance] [H : funext] (f g : Πx, B x)
: is_equiv (@eq_of_homotopy _ _ _ f g) :=
definition is_equiv_path_pi [instance] (H : funext) (f g : Πx, B x)
: is_equiv (@eq_of_homotopy _ _ f g) :=
is_equiv_inv apD10
definition homotopy_equiv_path [H : funext] (f g : Πx, B x) : (f g) ≃ (f = g) :=
equiv.mk _ !is_equiv_path_pi
definition homotopy_equiv_path (H : funext) (f g : Πx, B x) : (f g) ≃ (f = g) :=
equiv.mk _ (is_equiv_path_pi H f g)
/- Transport -/
@ -62,12 +63,12 @@ namespace pi
/- Maps on paths -/
/- The action of maps given by lambda. -/
definition ap_lambdaD [H : funext] {C : A' → Type} (p : a = a') (f : Πa b, C b) :
definition ap_lambdaD (H : funext) {C : A' → Type} (p : a = a') (f : Πa b, C b) :
ap (λa b, f a b) p = eq_of_homotopy (λb, ap (λa, f a b) p) :=
begin
apply (eq.rec_on p),
apply inverse,
apply path_pi_idp
apply (path_pi_idp H)
end
/- Dependent paths -/
@ -75,9 +76,9 @@ namespace pi
/- with more implicit arguments the conclusion of the following theorem is
(Π(b : B a), transportD B C p b (f b) = g (eq.transport B p b)) ≃
(eq.transport (λa, Π(b : B a), C a b) p f = g) -/
definition dpath_pi [H : funext] (p : a = a') (f : Π(b : B a), C a b) (g : Π(b' : B a'), C a' b')
definition dpath_pi (H : funext) (p : a = a') (f : Π(b : B a), C a b) (g : Π(b' : B a'), C a' b')
: (Π(b : B a), p ▹D (f b) = g (p ▹ b)) ≃ (p ▹ f = g) :=
eq.rec_on p (λg, !homotopy_equiv_path) g
eq.rec_on p (λg, homotopy_equiv_path H f g) g
section open sigma sigma.ops
/- more implicit arguments:

View file

@ -1,6 +1,6 @@
import algebra.group algebra.precategory.basic algebra.precategory.morphism
open eq sigma unit precategory morphism path_algebra
open eq sigma unit category morphism path_algebra
context
parameters {P₀ : Type} [P : precategory P₀]

View file

@ -1,6 +1,6 @@
import algebra.groupoid algebra.group
open eq sigma unit precategory morphism path_algebra equiv
open eq sigma unit category morphism path_algebra equiv
set_option pp.implicit true
set_option pp.universes true

View file

@ -1,12 +1,12 @@
import algebra.precategory.basic
open precategory
open category
context
parameter {D₀ : Type}
parameter (C : precategory D₀)
parameter (D₂ : Π ⦃a b c d : D₀⦄ (f : hom a b) (g : hom c d) (h : hom a c) (i : hom b d), Type)
attribute compose [reducible]
attribute comp [reducible]
definition comp₁_type [reducible] : Type :=
Π ⦃a b c₁ d₁ c₂ d₂ : D₀⦄