fix(tests/lean/hott): adjust tests to reflect changes in the HoTT library
This commit is contained in:
parent
f513538631
commit
0b48f406f9
4 changed files with 20 additions and 19 deletions
|
@ -24,27 +24,28 @@ namespace pi
|
|||
|
||||
/- Now we show how these things compute. -/
|
||||
|
||||
definition apD10_path_pi [H : funext] (h : f ∼ g) : apD10 (eq_of_homotopy h) ∼ h :=
|
||||
definition apD10_path_pi (H : funext) (h : f ∼ g) : apD10 (eq_of_homotopy h) ∼ h :=
|
||||
apD10 (retr apD10 h)
|
||||
|
||||
definition path_pi_eta [H : funext] (p : f = g) : eq_of_homotopy (apD10 p) = p :=
|
||||
definition path_pi_eta (H : funext) (p : f = g) : eq_of_homotopy (apD10 p) = p :=
|
||||
sect apD10 p
|
||||
|
||||
definition path_pi_idp [H : funext] : eq_of_homotopy (λx : A, refl (f x)) = refl f :=
|
||||
!path_pi_eta
|
||||
print classes
|
||||
|
||||
definition path_pi_idp (H : funext) : eq_of_homotopy (λx : A, refl (f x)) = refl f :=
|
||||
path_pi_eta H _
|
||||
|
||||
/- The identification of the path space of a dependent function space, up to equivalence, is of course just funext. -/
|
||||
|
||||
definition path_equiv_homotopy [H : funext] (f g : Πx, B x) : (f = g) ≃ (f ∼ g) :=
|
||||
equiv.mk _ !funext.elim
|
||||
definition path_equiv_homotopy (H : funext) (f g : Πx, B x) : (f = g) ≃ (f ∼ g) :=
|
||||
equiv.mk _ !is_equiv_apD
|
||||
|
||||
definition is_equiv_path_pi [instance] [H : funext] (f g : Πx, B x)
|
||||
: is_equiv (@eq_of_homotopy _ _ _ f g) :=
|
||||
definition is_equiv_path_pi [instance] (H : funext) (f g : Πx, B x)
|
||||
: is_equiv (@eq_of_homotopy _ _ f g) :=
|
||||
is_equiv_inv apD10
|
||||
|
||||
definition homotopy_equiv_path [H : funext] (f g : Πx, B x) : (f ∼ g) ≃ (f = g) :=
|
||||
equiv.mk _ !is_equiv_path_pi
|
||||
|
||||
definition homotopy_equiv_path (H : funext) (f g : Πx, B x) : (f ∼ g) ≃ (f = g) :=
|
||||
equiv.mk _ (is_equiv_path_pi H f g)
|
||||
|
||||
/- Transport -/
|
||||
|
||||
|
@ -62,12 +63,12 @@ namespace pi
|
|||
/- Maps on paths -/
|
||||
|
||||
/- The action of maps given by lambda. -/
|
||||
definition ap_lambdaD [H : funext] {C : A' → Type} (p : a = a') (f : Πa b, C b) :
|
||||
definition ap_lambdaD (H : funext) {C : A' → Type} (p : a = a') (f : Πa b, C b) :
|
||||
ap (λa b, f a b) p = eq_of_homotopy (λb, ap (λa, f a b) p) :=
|
||||
begin
|
||||
apply (eq.rec_on p),
|
||||
apply inverse,
|
||||
apply path_pi_idp
|
||||
apply (path_pi_idp H)
|
||||
end
|
||||
|
||||
/- Dependent paths -/
|
||||
|
@ -75,9 +76,9 @@ namespace pi
|
|||
/- with more implicit arguments the conclusion of the following theorem is
|
||||
(Π(b : B a), transportD B C p b (f b) = g (eq.transport B p b)) ≃
|
||||
(eq.transport (λa, Π(b : B a), C a b) p f = g) -/
|
||||
definition dpath_pi [H : funext] (p : a = a') (f : Π(b : B a), C a b) (g : Π(b' : B a'), C a' b')
|
||||
definition dpath_pi (H : funext) (p : a = a') (f : Π(b : B a), C a b) (g : Π(b' : B a'), C a' b')
|
||||
: (Π(b : B a), p ▹D (f b) = g (p ▹ b)) ≃ (p ▹ f = g) :=
|
||||
eq.rec_on p (λg, !homotopy_equiv_path) g
|
||||
eq.rec_on p (λg, homotopy_equiv_path H f g) g
|
||||
|
||||
section open sigma sigma.ops
|
||||
/- more implicit arguments:
|
||||
|
|
|
@ -1,6 +1,6 @@
|
|||
import algebra.group algebra.precategory.basic algebra.precategory.morphism
|
||||
|
||||
open eq sigma unit precategory morphism path_algebra
|
||||
open eq sigma unit category morphism path_algebra
|
||||
|
||||
context
|
||||
parameters {P₀ : Type} [P : precategory P₀]
|
||||
|
|
|
@ -1,6 +1,6 @@
|
|||
import algebra.groupoid algebra.group
|
||||
|
||||
open eq sigma unit precategory morphism path_algebra equiv
|
||||
open eq sigma unit category morphism path_algebra equiv
|
||||
|
||||
set_option pp.implicit true
|
||||
set_option pp.universes true
|
||||
|
|
|
@ -1,12 +1,12 @@
|
|||
import algebra.precategory.basic
|
||||
|
||||
open precategory
|
||||
open category
|
||||
|
||||
context
|
||||
parameter {D₀ : Type}
|
||||
parameter (C : precategory D₀)
|
||||
parameter (D₂ : Π ⦃a b c d : D₀⦄ (f : hom a b) (g : hom c d) (h : hom a c) (i : hom b d), Type)
|
||||
attribute compose [reducible]
|
||||
attribute comp [reducible]
|
||||
|
||||
definition comp₁_type [reducible] : Type :=
|
||||
Π ⦃a b c₁ d₁ c₂ d₂ : D₀⦄
|
||||
|
|
Loading…
Reference in a new issue