refactor(logic/core/eq): use sections

This commit is contained in:
Leonardo de Moura 2014-10-05 10:19:50 -07:00
parent 317e910054
commit 0f90d10a13

View file

@ -1,14 +1,13 @@
-- Copyright (c) 2014 Microsoft Corporation. All rights reserved. -- Copyright (c) 2014 Microsoft Corporation. All rights reserved.
-- Released under Apache 2.0 license as described in the file LICENSE. -- Released under Apache 2.0 license as described in the file LICENSE.
-- Authors: Leonardo de Moura, Jeremy Avigad, Floris van Doorn -- Authors: Leonardo de Moura, Jeremy Avigad, Floris van Doorn
import .prop
-- logic.connectives.eq -- logic.connectives.eq
-- ==================== -- ====================
-- Equality. -- Equality.
import .prop
-- eq -- eq
-- -- -- --
@ -19,23 +18,24 @@ infix `=` := eq
definition rfl {A : Type} {a : A} := eq.refl a definition rfl {A : Type} {a : A} := eq.refl a
-- proof irrelevance is built in -- proof irrelevance is built in
theorem proof_irrel {a : Prop} {H1 H2 : a} : H1 = H2 := rfl theorem proof_irrel {a : Prop} {H₁ H₂ : a} : H₁ = H₂ :=
rfl
namespace eq namespace eq
section section
variables {A : Type} variables {A : Type}
variables {a b c : A} variables {a b c : A}
theorem id_refl (H1 : a = a) : H1 = (eq.refl a) := theorem id_refl (H₁ : a = a) : H₁ = (eq.refl a) :=
proof_irrel proof_irrel
theorem irrel (H1 H2 : a = b) : H1 = H2 := theorem irrel (H₁ H₂ : a = b) : H₁ = H₂ :=
proof_irrel proof_irrel
theorem subst {P : A → Prop} (H1 : a = b) (H2 : P a) : P b := theorem subst {P : A → Prop} (H₁ : a = b) (H₂ : P a) : P b :=
rec H2 H1 rec H₂ H₁
theorem trans (H1 : a = b) (H2 : b = c) : a = c := theorem trans (H₁ : a = b) (H₂ : b = c) : a = c :=
subst H2 H1 subst H₂ H₁
theorem symm (H : a = b) : b = a := theorem symm (H : a = b) : b = a :=
subst H (refl a) subst H (refl a)
@ -54,13 +54,8 @@ calc_trans eq.trans
open eq.ops open eq.ops
namespace eq namespace eq
-- eq_rec with arguments swapped, for transporting an element of a dependent type definition rec_on {A : Type} {a a' : A} {B : Πa' : A, a = a' → Type} (H₁ : a = a') (H₂ : B a (refl a)) : B a' H₁ :=
eq.rec (λH₁ : a = a, show B a H₁, from H₂) H₁ H₁
-- definition rec_on {A : Type} {a1 a2 : A} {B : A → Type} (H1 : a1 = a2) (H2 : B a1) : B a2 :=
-- eq.rec H2 H1
definition rec_on {A : Type} {a a' : A} {B : Πa' : A, a = a' → Type} (H1 : a = a') (H2 : B a (refl a)) : B a' H1 :=
eq.rec (λH1 : a = a, show B a H1, from H2) H1 H1
theorem rec_on_id {A : Type} {a : A} {B : Πa' : A, a = a' → Type} (H : a = a) (b : B a H) : rec_on H b = b := theorem rec_on_id {A : Type} {a : A} {B : Πa' : A, a = a' → Type} (H : a = a) (b : B a H) : rec_on H b = b :=
refl (rec_on rfl b) refl (rec_on rfl b)
@ -68,62 +63,73 @@ namespace eq
theorem rec_on_constant {A : Type} {a a' : A} {B : Type} (H : a = a') (b : B) : rec_on H b = b := theorem rec_on_constant {A : Type} {a a' : A} {B : Type} (H : a = a') (b : B) : rec_on H b = b :=
rec_on H (λ(H' : a = a), rec_on_id H' b) H rec_on H (λ(H' : a = a), rec_on_id H' b) H
theorem rec_on_constant2 {A : Type} {a₁ a₂ a₃ a₄ : A} {B : Type} (H₁ : a₁ = a₂) (H₂ : a₃ = a₄) (b : B) : rec_on H₁ b = rec_on H₂ b := theorem rec_on_constant2 {A : Type} {a₁ a₂ a₃ a₄ : A} {B : Type} (H₁ : a₁ = a₂) (H₂ : a₃ = a₄) (b : B) :
rec_on_constant H₁ b ⬝ rec_on_constant H₂ b ⁻¹ rec_on H₁ b = rec_on H₂ b :=
rec_on_constant H₁ b ⬝ (rec_on_constant H₂ b)⁻¹
theorem rec_on_irrel {A B : Type} {a a' : A} {f : A → B} {D : B → Type} (H : a = a') (H' : f a = f a') (b : D (f a)) : rec_on H b = rec_on H' b := theorem rec_on_irrel {A B : Type} {a a' : A} {f : A → B} {D : B → Type} (H : a = a') (H' : f a = f a') (b : D (f a)) :
rec_on H b = rec_on H' b :=
rec_on H (λ(H : a = a) (H' : f a = f a), rec_on_id H b ⬝ rec_on_id H' b⁻¹) H H' rec_on H (λ(H : a = a) (H' : f a = f a), rec_on_id H b ⬝ rec_on_id H' b⁻¹) H H'
theorem rec_id {A : Type} {a : A} {B : A → Type} (H : a = a) (b : B a) : rec b H = b := theorem rec_id {A : Type} {a : A} {B : A → Type} (H : a = a) (b : B a) : rec b H = b :=
id_refl H⁻¹ ▸ refl (eq.rec b (refl a)) id_refl H⁻¹ ▸ refl (eq.rec b (refl a))
theorem rec_on_compose {A : Type} {a b c : A} {P : A → Type} (H1 : a = b) (H2 : b = c) theorem rec_on_compose {A : Type} {a b c : A} {P : A → Type} (H₁ : a = b) (H₂ : b = c)
(u : P a) : (u : P a) :
rec_on H2 (rec_on H1 u) = rec_on (trans H1 H2) u := rec_on H₂ (rec_on H₁ u) = rec_on (trans H₁ H₂) u :=
(show ∀(H2 : b = c), rec_on H2 (rec_on H1 u) = rec_on (trans H1 H2) u, (show ∀ H₂ : b = c, rec_on H₂ (rec_on H₁ u) = rec_on (trans H₁ H₂) u,
from rec_on H2 (take (H2 : b = b), rec_on_id H2 _)) from rec_on H₂ (take (H₂ : b = b), rec_on_id H₂ _))
H2 H
end eq end eq
open eq open eq
theorem congr_fun {A : Type} {B : A → Type} {f g : Π x, B x} (H : f = g) (a : A) : f a = g a := section
variables {A B C D E F : Type}
variables {a a' : A} {b b' : B} {c c' : C} {d d' : D} {e e' : E} {f f' : F}
theorem congr_fun {B : A → Type} {f g : Π x, B x} (H : f = g) (a : A) : f a = g a :=
H ▸ rfl H ▸ rfl
theorem congr_arg {A : Type} {B : Type} {a b : A} (f : A → B) (H : a = b) : f a = f b := theorem congr_arg (f : A → B) (H : a = a') : f a = f a' :=
H ▸ rfl H ▸ rfl
theorem congr {A : Type} {B : Type} {f g : A → B} {a b : A} (H1 : f = g) (H2 : a = b) : theorem congr {f g : A → B} (H₁ : f = g) (H₂ : a = a') : f a = g a' :=
f a = g b := H₁ ▸ H₂ ▸ rfl
H1 ▸ H2 ▸ rfl
theorem congr_arg2 {A B C : Type} {a a' : A} {b b' : B} (f : A → B → C) (Ha : a = a') (Hb : b = b') : f a b = f a' b' := theorem congr_arg2 (f : A → B → C) (Ha : a = a') (Hb : b = b') : f a b = f a' b' :=
congr (congr_arg f Ha) Hb congr (congr_arg f Ha) Hb
theorem congr_arg3 {A B C D : Type} {a a' : A} {b b' : B} {c c' : C} (f : A → B → C → D) (Ha : a = a') (Hb : b = b') (Hc : c = c') : f a b c = f a' b' c' := theorem congr_arg3 (f : A → B → C → D) (Ha : a = a') (Hb : b = b') (Hc : c = c') : f a b c = f a' b' c' :=
congr (congr_arg2 f Ha Hb) Hc congr (congr_arg2 f Ha Hb) Hc
theorem congr_arg4 {A B C D E : Type} {a a' : A} {b b' : B} {c c' : C} {d d' : D} (f : A → B → C → D → E) (Ha : a = a') (Hb : b = b') (Hc : c = c') (Hd : d = d') : f a b c d = f a' b' c' d' := theorem congr_arg4 (f : A → B → C → D → E) (Ha : a = a') (Hb : b = b') (Hc : c = c') (Hd : d = d') : f a b c d = f a' b' c' d' :=
congr (congr_arg3 f Ha Hb Hc) Hd congr (congr_arg3 f Ha Hb Hc) Hd
theorem congr_arg5 {A B C D E F : Type} {a a' : A} {b b' : B} {c c' : C} {d d' : D} {e e' : E} (f : A → B → C → D → E → F) (Ha : a = a') (Hb : b = b') (Hc : c = c') (Hd : d = d') (He : e = e') : f a b c d e = f a' b' c' d' e' := theorem congr_arg5 (f : A → B → C → D → E → F) (Ha : a = a') (Hb : b = b') (Hc : c = c') (Hd : d = d') (He : e = e')
: f a b c d e = f a' b' c' d' e' :=
congr (congr_arg4 f Ha Hb Hc Hd) He congr (congr_arg4 f Ha Hb Hc Hd) He
theorem congr2 {A B C : Type} {a a' : A} {b b' : B} (f f' : A → B → C) (Hf : f = f') (Ha : a = a') (Hb : b = b') : f a b = f' a' b' := theorem congr2 (f f' : A → B → C) (Hf : f = f') (Ha : a = a') (Hb : b = b') : f a b = f' a' b' :=
Hf ▸ congr_arg2 f Ha Hb Hf ▸ congr_arg2 f Ha Hb
theorem congr3 {A B C D : Type} {a a' : A} {b b' : B} {c c' : C} (f f' : A → B → C → D) (Hf : f = f') (Ha : a = a') (Hb : b = b') (Hc : c = c') : f a b c = f' a' b' c' := theorem congr3 (f f' : A → B → C → D) (Hf : f = f') (Ha : a = a') (Hb : b = b') (Hc : c = c') : f a b c = f' a' b' c' :=
Hf ▸ congr_arg3 f Ha Hb Hc Hf ▸ congr_arg3 f Ha Hb Hc
theorem congr4 {A B C D E : Type} {a a' : A} {b b' : B} {c c' : C} {d d' : D} (f f' : A → B → C → D → E) (Hf : f = f') (Ha : a = a') (Hb : b = b') (Hc : c = c') (Hd : d = d') : f a b c d = f' a' b' c' d' := theorem congr4 (f f' : A → B → C → D → E) (Hf : f = f') (Ha : a = a') (Hb : b = b') (Hc : c = c') (Hd : d = d')
: f a b c d = f' a' b' c' d' :=
Hf ▸ congr_arg4 f Ha Hb Hc Hd Hf ▸ congr_arg4 f Ha Hb Hc Hd
theorem congr5 {A B C D E F : Type} {a a' : A} {b b' : B} {c c' : C} {d d' : D} {e e' : E} (f f' : A → B → C → D → E → F) (Hf : f = f') (Ha : a = a') (Hb : b = b') (Hc : c = c') (Hd : d = d') (He : e = e') : f a b c d e = f' a' b' c' d' e' := theorem congr5 (f f' : A → B → C → D → E → F) (Hf : f = f') (Ha : a = a') (Hb : b = b') (Hc : c = c') (Hd : d = d') (He : e = e')
: f a b c d e = f' a' b' c' d' e' :=
Hf ▸ congr_arg5 f Ha Hb Hc Hd He Hf ▸ congr_arg5 f Ha Hb Hc Hd He
end
theorem congr_arg2_dep {A : Type} {B : A → Type} {C : Type} {a₁ a₂ : A} section
{b₁ : B a₁} {b₂ : B a₂} (f : Πa, B a → C) (H₁ : a₁ = a₂) (H₂ : eq.rec_on H₁ b₁ = b₂) : variables {A : Type} {B : A → Type} {C : Πa, B a → Type} {R : Type}
f a₁ b₁ = f a₂ b₂ := variables {a₁ a₂ : A} {b₁ : B a₁} {b₂ : B a₂} {c₁ : C a₁ b₁} {c₂ : C a₂ b₂}
theorem congr_arg2_dep (f : Πa, B a → R) (H₁ : a₁ = a₂) (H₂ : eq.rec_on H₁ b₁ = b₂) : f a₁ b₁ = f a₂ b₂ :=
eq.rec_on H₁ eq.rec_on H₁
(λ (b₂ : B a₁) (H₁ : a₁ = a₁) (H₂ : eq.rec_on H₁ b₁ = b₂), (λ (b₂ : B a₁) (H₁ : a₁ = a₁) (H₂ : eq.rec_on H₁ b₁ = b₂),
calc calc
@ -131,9 +137,8 @@ theorem congr_arg2_dep {A : Type} {B : A → Type} {C : Type} {a₁ a₂ : A}
... = f a₁ b₂ : {H₂}) ... = f a₁ b₂ : {H₂})
b₂ H₁ H₂ b₂ H₁ H₂
theorem congr_arg3_dep {A : Type} {B : A → Type} {C : Πa, B a → Type} {D : Type} {a₁ a₂ : A} {b₁ : B a₁} {b₂ : B a₂} {c₁ : C a₁ b₁} {c₂ : C a₂ b₂} (f : Πa b, C a b → D) theorem congr_arg3_dep (f : Πa b, C a b → R) (H₁ : a₁ = a₂) (H₂ : eq.rec_on H₁ b₁ = b₂)
(H₁ : a₁ = a₂) (H₂ : eq.rec_on H₁ b₁ = b₂) (H₃ : eq.rec_on (congr_arg2_dep C H₁ H₂) c₁ = c₂) : (H₃ : eq.rec_on (congr_arg2_dep C H₁ H₂) c₁ = c₂) : f a₁ b₁ c₁ = f a₂ b₂ c₂ :=
f a₁ b₁ c₁ = f a₂ b₂ c₂ :=
eq.rec_on H₁ eq.rec_on H₁
(λ (b₂ : B a₁) (H₂ : b₁ = b₂) (c₂ : C a₁ b₂) (λ (b₂ : B a₁) (H₂ : b₁ = b₂) (c₂ : C a₁ b₂)
(H₃ : (rec_on (congr_arg2_dep C (refl a₁) H₂) c₁) = c₂), (H₃ : (rec_on (congr_arg2_dep C (refl a₁) H₂) c₁) = c₂),
@ -141,35 +146,43 @@ eq.rec_on H₁
from (rec_on_irrel H₂ (congr_arg2_dep C (refl a₁) H₂) c₁⁻¹) ▸ H₃, from (rec_on_irrel H₂ (congr_arg2_dep C (refl a₁) H₂) c₁⁻¹) ▸ H₃,
congr_arg2_dep (f a₁) H₂ H₃') congr_arg2_dep (f a₁) H₂ H₃')
b₂ H₂ c₂ H₃ b₂ H₂ c₂ H₃
end
theorem congr_arg3_ndep_dep {A B : Type} {C : A → B → Type} {D : Type} {a₁ a₂ : A} {b₁ b₂ : B} {c₁ : C a₁ b₁} {c₂ : C a₂ b₂} (f : Πa b, C a b → D) section
(H₁ : a₁ = a₂) (H₂ : b₁ = b₂) (H₃ : eq.rec_on (congr_arg2 C H₁ H₂) c₁ = c₂) : variables {A B : Type} {C : A → B → Type} {R : Type}
variables {a₁ a₂ : A} {b₁ b₂ : B} {c₁ : C a₁ b₁} {c₂ : C a₂ b₂}
theorem congr_arg3_ndep_dep (f : Πa b, C a b → R) (H₁ : a₁ = a₂) (H₂ : b₁ = b₂) (H₃ : eq.rec_on (congr_arg2 C H₁ H₂) c₁ = c₂) :
f a₁ b₁ c₁ = f a₂ b₂ c₂ := f a₁ b₁ c₁ = f a₂ b₂ c₂ :=
congr_arg3_dep f H₁ (rec_on_constant H₁ b₁ ⬝ H₂) H₃ congr_arg3_dep f H₁ (rec_on_constant H₁ b₁ ⬝ H₂) H₃
end
theorem equal_f {A : Type} {B : A → Type} {f g : Π x, B x} (H : f = g) : ∀x, f x = g x := theorem equal_f {A : Type} {B : A → Type} {f g : Π x, B x} (H : f = g) : ∀x, f x = g x :=
take x, congr_fun H x take x, congr_fun H x
theorem eqmp {a b : Prop} (H1 : a = b) (H2 : a) : b := section
H1 ▸ H2 variables {a b c : Prop}
theorem eqmpr {a b : Prop} (H1 : a = b) (H2 : b) : a := theorem eqmp (H₁ : a = b) (H₂ : a) : b :=
H1⁻¹ ▸ H2 H₁ ▸ H₂
theorem eq_true_elim {a : Prop} (H : a = true) : a := theorem eqmpr (H₁ : a = b) (H₂ : b) : a :=
H₁⁻¹ ▸ H₂
theorem eq_true_elim (H : a = true) : a :=
H⁻¹ ▸ trivial H⁻¹ ▸ trivial
theorem eq_false_elim {a : Prop} (H : a = false) : ¬a := theorem eq_false_elim (H : a = false) : ¬a :=
assume Ha : a, H ▸ Ha assume Ha : a, H ▸ Ha
theorem imp_trans {a b c : Prop} (H1 : a → b) (H2 : b → c) : a → c := theorem imp_trans (H₁ : a → b) (H₂ : b → c) : a → c :=
assume Ha, H2 (H1 Ha) assume Ha, H₂ (H₁ Ha)
theorem imp_eq_trans {a b c : Prop} (H1 : a → b) (H2 : b = c) : a → c := theorem imp_eq_trans (H₁ : a → b) (H₂ : b = c) : a → c :=
assume Ha, H2 ▸ (H1 Ha) assume Ha, H₂ ▸ (H₁ Ha)
theorem eq_imp_trans {a b c : Prop} (H1 : a = b) (H2 : b → c) : a → c := theorem eq_imp_trans (H₁ : a = b) (H₂ : b → c) : a → c :=
assume Ha, H2 (H1 ▸ Ha) assume Ha, H₂ (H₁ ▸ Ha)
end
-- ne -- ne
-- -- -- --
@ -182,37 +195,45 @@ section
variable {A : Type} variable {A : Type}
variables {a b : A} variables {a b : A}
theorem intro (H : a = b → false) : a ≠ b := theorem intro : (a = b → false) → a ≠ b :=
H assume H, H
theorem elim (H1 : a ≠ b) (H2 : a = b) : false := theorem elim : a ≠ b → a = b → false :=
H1 H2 assume H₁ H₂, H₁ H₂
theorem irrefl (H : a ≠ a) : false := theorem irrefl : a ≠ a → false :=
H rfl assume H, H rfl
theorem symm (H : a ≠ b) : b ≠ a := theorem symm : a ≠ b → b ≠ a :=
assume H1 : b = a, H (H1⁻¹) assume (H : a ≠ b) (H₁ : b = a), H (H₁⁻¹)
end end
end ne end ne
theorem a_neq_a_elim {A : Type} {a : A} (H : a ≠ a) : false := section
H rfl variables {A : Type} {a b c : A}
theorem eq_ne_trans {A : Type} {a b c : A} (H1 : a = b) (H2 : b ≠ c) : a ≠ c := theorem a_neq_a_elim : a ≠ a → false :=
H1⁻¹ ▸ H2 assume H, H rfl
theorem ne_eq_trans {A : Type} {a b c : A} (H1 : a ≠ b) (H2 : b = c) : a ≠ c := theorem eq_ne_trans : a = b → b ≠ c → a ≠ c :=
H2 ▸ H1 assume H₁ H₂, H₁⁻¹ ▸ H₂
theorem ne_eq_trans : a ≠ b → b = c → a ≠ c :=
assume H₁ H₂, H₂ ▸ H₁
end
calc_trans eq_ne_trans calc_trans eq_ne_trans
calc_trans ne_eq_trans calc_trans ne_eq_trans
theorem p_ne_false {p : Prop} (Hp : p) : p ≠ false := section
assume Heq : p = false, Heq ▸ Hp variables {p : Prop}
theorem p_ne_true {p : Prop} (Hnp : ¬p) : p ≠ true := theorem p_ne_false : p → p ≠ false :=
assume Heq : p = true, absurd trivial (Heq ▸ Hnp) assume (Hp : p) (Heq : p = false), Heq ▸ Hp
theorem p_ne_true : ¬p → p ≠ true :=
assume (Hnp : ¬p) (Heq : p = true), absurd trivial (Heq ▸ Hnp)
end
theorem true_ne_false : ¬true = false := theorem true_ne_false : ¬true = false :=
assume H : true = false, assume H : true = false,