chore(hott) adjust to new naming for pointed types and truncated types
This commit is contained in:
parent
2b13777bbe
commit
1104537d02
2 changed files with 7 additions and 15 deletions
|
@ -13,8 +13,8 @@ namespace category
|
|||
|
||||
section
|
||||
universe variable l
|
||||
parameters (A : Type.{l}) [HA : is_hset A] [OA : weak_order.{l} A]
|
||||
[Hle : Π a b : A, is_hprop (a ≤ b)]
|
||||
parameters (A : Type.{l}) [HA : is_set A] [OA : weak_order.{l} A]
|
||||
[Hle : Π a b : A, is_prop (a ≤ b)]
|
||||
include A HA OA Hle
|
||||
|
||||
definition precategory_order [constructor] : precategory.{l l} A :=
|
||||
|
@ -23,7 +23,7 @@ begin
|
|||
{ intro a b, exact a ≤ b },
|
||||
{ intro a b c, exact ge.trans },
|
||||
{ intro a, apply le.refl },
|
||||
do 5 (intros; apply is_hprop.elim),
|
||||
do 5 (intros; apply is_prop.elim),
|
||||
{ intros, apply is_trunc_succ }
|
||||
end
|
||||
|
||||
|
@ -33,19 +33,11 @@ definition category_order : category.{l l} A :=
|
|||
begin
|
||||
fapply category.mk precategory_order,
|
||||
intros a b, fapply adjointify,
|
||||
{ intro f, apply le.antisymm, apply (iso.to_hom f), apply (iso.to_inv f) },
|
||||
{ intro f, fapply iso_eq, esimp[precategory_order], apply is_hprop.elim },
|
||||
{ intro p, apply is_hprop.elim }
|
||||
{ intro f, apply le.antisymm, apply iso.to_hom f, apply iso.to_inv f },
|
||||
{ intro f, fapply iso_eq, esimp[precategory_order], apply is_prop.elim },
|
||||
{ intro p, apply is_prop.elim }
|
||||
end
|
||||
|
||||
end
|
||||
|
||||
open fin
|
||||
|
||||
definition category_fin [constructor] (n : nat) : category (fin n) :=
|
||||
category_order (fin n)
|
||||
|
||||
definition Category_fin [reducible] [constructor] (n : nat) : Category :=
|
||||
Category.mk (fin n) (category_fin n)
|
||||
|
||||
end category
|
||||
|
|
|
@ -9,7 +9,7 @@ More or less ported from Evan Cavallo's HoTT-Agda homotopy library.
|
|||
|
||||
import types.pointed
|
||||
|
||||
open equiv function pointed Pointed
|
||||
open equiv function pointed
|
||||
|
||||
structure type_functor : Type :=
|
||||
(fun_ty : Type → Type)
|
||||
|
|
Loading…
Reference in a new issue