feat(library/hott) port Jeremy's group file to use path equality
This commit is contained in:
parent
58432d0968
commit
116e7ff82e
3 changed files with 764 additions and 0 deletions
75
library/hott/algebra/binary.lean
Normal file
75
library/hott/algebra/binary.lean
Normal file
|
@ -0,0 +1,75 @@
|
||||||
|
/-
|
||||||
|
Copyright (c) 2014 Microsoft Corporation. All rights reserved.
|
||||||
|
Released under Apache 2.0 license as described in the file LICENSE.
|
||||||
|
|
||||||
|
Module: algebra.binary
|
||||||
|
Authors: Leonardo de Moura, Jeremy Avigad
|
||||||
|
|
||||||
|
General properties of binary operations.
|
||||||
|
-/
|
||||||
|
|
||||||
|
import hott.path
|
||||||
|
open path
|
||||||
|
|
||||||
|
namespace path_binary
|
||||||
|
section
|
||||||
|
variable {A : Type}
|
||||||
|
variables (op₁ : A → A → A) (inv : A → A) (one : A)
|
||||||
|
|
||||||
|
notation [local] a * b := op₁ a b
|
||||||
|
notation [local] a ⁻¹ := inv a
|
||||||
|
notation [local] 1 := one
|
||||||
|
|
||||||
|
definition commutative := ∀a b, a*b ≈ b*a
|
||||||
|
definition associative := ∀a b c, (a*b)*c ≈ a*(b*c)
|
||||||
|
definition left_identity := ∀a, 1 * a ≈ a
|
||||||
|
definition right_identity := ∀a, a * 1 ≈ a
|
||||||
|
definition left_inverse := ∀a, a⁻¹ * a ≈ 1
|
||||||
|
definition right_inverse := ∀a, a * a⁻¹ ≈ 1
|
||||||
|
definition left_cancelative := ∀a b c, a * b ≈ a * c → b ≈ c
|
||||||
|
definition right_cancelative := ∀a b c, a * b ≈ c * b → a ≈ c
|
||||||
|
|
||||||
|
definition inv_op_cancel_left := ∀a b, a⁻¹ * (a * b) ≈ b
|
||||||
|
definition op_inv_cancel_left := ∀a b, a * (a⁻¹ * b) ≈ b
|
||||||
|
definition inv_op_cancel_right := ∀a b, a * b⁻¹ * b ≈ a
|
||||||
|
definition op_inv_cancel_right := ∀a b, a * b * b⁻¹ ≈ a
|
||||||
|
|
||||||
|
variable (op₂ : A → A → A)
|
||||||
|
|
||||||
|
notation [local] a + b := op₂ a b
|
||||||
|
|
||||||
|
definition left_distributive := ∀a b c, a * (b + c) ≈ a * b + a * c
|
||||||
|
definition right_distributive := ∀a b c, (a + b) * c ≈ a * c + b * c
|
||||||
|
end
|
||||||
|
|
||||||
|
context
|
||||||
|
variable {A : Type}
|
||||||
|
variable {f : A → A → A}
|
||||||
|
variable H_comm : commutative f
|
||||||
|
variable H_assoc : associative f
|
||||||
|
infixl `*` := f
|
||||||
|
theorem left_comm : ∀a b c, a*(b*c) ≈ b*(a*c) :=
|
||||||
|
take a b c, calc
|
||||||
|
a*(b*c) ≈ (a*b)*c : H_assoc
|
||||||
|
... ≈ (b*a)*c : H_comm
|
||||||
|
... ≈ b*(a*c) : H_assoc
|
||||||
|
|
||||||
|
theorem right_comm : ∀a b c, (a*b)*c ≈ (a*c)*b :=
|
||||||
|
take a b c, calc
|
||||||
|
(a*b)*c ≈ a*(b*c) : H_assoc
|
||||||
|
... ≈ a*(c*b) : H_comm
|
||||||
|
... ≈ (a*c)*b : H_assoc
|
||||||
|
end
|
||||||
|
|
||||||
|
context
|
||||||
|
variable {A : Type}
|
||||||
|
variable {f : A → A → A}
|
||||||
|
variable H_assoc : associative f
|
||||||
|
infixl `*` := f
|
||||||
|
theorem assoc4helper (a b c d) : (a*b)*(c*d) ≈ a*((b*c)*d) :=
|
||||||
|
calc
|
||||||
|
(a*b)*(c*d) ≈ a*(b*(c*d)) : H_assoc
|
||||||
|
... ≈ a*((b*c)*d) : H_assoc
|
||||||
|
end
|
||||||
|
|
||||||
|
end path_binary
|
567
library/hott/algebra/group.lean
Normal file
567
library/hott/algebra/group.lean
Normal file
|
@ -0,0 +1,567 @@
|
||||||
|
/-
|
||||||
|
Copyright (c) 2014 Jeremy Avigad. All rights reserved.
|
||||||
|
Released under Apache 2.0 license as described in the file LICENSE.
|
||||||
|
|
||||||
|
Module: algebra.group
|
||||||
|
Authors: Jeremy Avigad, Leonardo de Moura
|
||||||
|
|
||||||
|
Various multiplicative and additive structures. Partially modeled on Isabelle's library.
|
||||||
|
-/
|
||||||
|
|
||||||
|
import hott.path hott.trunc data.unit data.sigma data.prod
|
||||||
|
import hott.algebra.binary
|
||||||
|
|
||||||
|
open path truncation path_binary -- note: ⁻¹ will be overloaded
|
||||||
|
|
||||||
|
namespace path_algebra
|
||||||
|
|
||||||
|
variable {A : Type}
|
||||||
|
|
||||||
|
/- overloaded symbols -/
|
||||||
|
structure has_mul [class] (A : Type) :=
|
||||||
|
(mul : A → A → A)
|
||||||
|
|
||||||
|
structure has_add [class] (A : Type) :=
|
||||||
|
(add : A → A → A)
|
||||||
|
|
||||||
|
structure has_one [class] (A : Type) :=
|
||||||
|
(one : A)
|
||||||
|
|
||||||
|
structure has_zero [class] (A : Type) :=
|
||||||
|
(zero : A)
|
||||||
|
|
||||||
|
structure has_inv [class] (A : Type) :=
|
||||||
|
(inv : A → A)
|
||||||
|
|
||||||
|
structure has_neg [class] (A : Type) :=
|
||||||
|
(neg : A → A)
|
||||||
|
|
||||||
|
infixl `*` := has_mul.mul
|
||||||
|
infixl `+` := has_add.add
|
||||||
|
postfix `⁻¹` := has_inv.inv
|
||||||
|
prefix `-` := has_neg.neg
|
||||||
|
notation 1 := !has_one.one
|
||||||
|
notation 0 := !has_zero.zero
|
||||||
|
|
||||||
|
|
||||||
|
/- semigroup -/
|
||||||
|
|
||||||
|
structure semigroup [class] (A : Type) extends has_mul A :=
|
||||||
|
(carrier_hset : is_hset A)
|
||||||
|
(mul_assoc : ∀a b c, mul (mul a b) c ≈ mul a (mul b c))
|
||||||
|
|
||||||
|
theorem mul_assoc [s : semigroup A] (a b c : A) : a * b * c ≈ a * (b * c) :=
|
||||||
|
!semigroup.mul_assoc
|
||||||
|
|
||||||
|
structure comm_semigroup [class] (A : Type) extends semigroup A :=
|
||||||
|
(mul_comm : ∀a b, mul a b ≈ mul b a)
|
||||||
|
|
||||||
|
theorem mul_comm [s : comm_semigroup A] (a b : A) : a * b ≈ b * a :=
|
||||||
|
!comm_semigroup.mul_comm
|
||||||
|
|
||||||
|
theorem mul_left_comm [s : comm_semigroup A] (a b c : A) : a * (b * c) ≈ b * (a * c) :=
|
||||||
|
path_binary.left_comm (@mul_comm A s) (@mul_assoc A s) a b c
|
||||||
|
|
||||||
|
theorem mul_right_comm [s : comm_semigroup A] (a b c : A) : (a * b) * c ≈ (a * c) * b :=
|
||||||
|
path_binary.right_comm (@mul_comm A s) (@mul_assoc A s) a b c
|
||||||
|
|
||||||
|
structure left_cancel_semigroup [class] (A : Type) extends semigroup A :=
|
||||||
|
(mul_left_cancel : ∀a b c, mul a b ≈ mul a c → b ≈ c)
|
||||||
|
|
||||||
|
theorem mul_left_cancel [s : left_cancel_semigroup A] {a b c : A} :
|
||||||
|
a * b ≈ a * c → b ≈ c :=
|
||||||
|
!left_cancel_semigroup.mul_left_cancel
|
||||||
|
|
||||||
|
structure right_cancel_semigroup [class] (A : Type) extends semigroup A :=
|
||||||
|
(mul_right_cancel : ∀a b c, mul a b ≈ mul c b → a ≈ c)
|
||||||
|
|
||||||
|
theorem mul_right_cancel [s : right_cancel_semigroup A] {a b c : A} :
|
||||||
|
a * b ≈ c * b → a ≈ c :=
|
||||||
|
!right_cancel_semigroup.mul_right_cancel
|
||||||
|
|
||||||
|
|
||||||
|
/- additive semigroup -/
|
||||||
|
|
||||||
|
structure add_semigroup [class] (A : Type) extends has_add A :=
|
||||||
|
(add_assoc : ∀a b c, add (add a b) c ≈ add a (add b c))
|
||||||
|
|
||||||
|
theorem add_assoc [s : add_semigroup A] (a b c : A) : a + b + c ≈ a + (b + c) :=
|
||||||
|
!add_semigroup.add_assoc
|
||||||
|
|
||||||
|
structure add_comm_semigroup [class] (A : Type) extends add_semigroup A :=
|
||||||
|
(add_comm : ∀a b, add a b ≈ add b a)
|
||||||
|
|
||||||
|
theorem add_comm [s : add_comm_semigroup A] (a b : A) : a + b ≈ b + a :=
|
||||||
|
!add_comm_semigroup.add_comm
|
||||||
|
|
||||||
|
theorem add_left_comm [s : add_comm_semigroup A] (a b c : A) :
|
||||||
|
a + (b + c) ≈ b + (a + c) :=
|
||||||
|
path_binary.left_comm (@add_comm A s) (@add_assoc A s) a b c
|
||||||
|
|
||||||
|
theorem add_right_comm [s : add_comm_semigroup A] (a b c : A) : (a + b) + c ≈ (a + c) + b :=
|
||||||
|
path_binary.right_comm (@add_comm A s) (@add_assoc A s) a b c
|
||||||
|
|
||||||
|
structure add_left_cancel_semigroup [class] (A : Type) extends add_semigroup A :=
|
||||||
|
(add_left_cancel : ∀a b c, add a b ≈ add a c → b ≈ c)
|
||||||
|
|
||||||
|
theorem add_left_cancel [s : add_left_cancel_semigroup A] {a b c : A} :
|
||||||
|
a + b ≈ a + c → b ≈ c :=
|
||||||
|
!add_left_cancel_semigroup.add_left_cancel
|
||||||
|
|
||||||
|
structure add_right_cancel_semigroup [class] (A : Type) extends add_semigroup A :=
|
||||||
|
(add_right_cancel : ∀a b c, add a b ≈ add c b → a ≈ c)
|
||||||
|
|
||||||
|
theorem add_right_cancel [s : add_right_cancel_semigroup A] {a b c : A} :
|
||||||
|
a + b ≈ c + b → a ≈ c :=
|
||||||
|
!add_right_cancel_semigroup.add_right_cancel
|
||||||
|
|
||||||
|
/- monoid -/
|
||||||
|
|
||||||
|
structure monoid [class] (A : Type) extends semigroup A, has_one A :=
|
||||||
|
(mul_left_id : ∀a, mul one a ≈ a) (mul_right_id : ∀a, mul a one ≈ a)
|
||||||
|
|
||||||
|
theorem mul_left_id [s : monoid A] (a : A) : 1 * a ≈ a := !monoid.mul_left_id
|
||||||
|
|
||||||
|
theorem mul_right_id [s : monoid A] (a : A) : a * 1 ≈ a := !monoid.mul_right_id
|
||||||
|
|
||||||
|
structure comm_monoid [class] (A : Type) extends monoid A, comm_semigroup A
|
||||||
|
|
||||||
|
|
||||||
|
/- additive monoid -/
|
||||||
|
|
||||||
|
structure add_monoid [class] (A : Type) extends add_semigroup A, has_zero A :=
|
||||||
|
(add_left_id : ∀a, add zero a ≈ a) (add_right_id : ∀a, add a zero ≈ a)
|
||||||
|
|
||||||
|
theorem add_left_id [s : add_monoid A] (a : A) : 0 + a ≈ a := !add_monoid.add_left_id
|
||||||
|
|
||||||
|
theorem add_right_id [s : add_monoid A] (a : A) : a + 0 ≈ a := !add_monoid.add_right_id
|
||||||
|
|
||||||
|
structure add_comm_monoid [class] (A : Type) extends add_monoid A, add_comm_semigroup A
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
/- group -/
|
||||||
|
|
||||||
|
structure group [class] (A : Type) extends monoid A, has_inv A :=
|
||||||
|
(mul_left_inv : ∀a, mul (inv a) a ≈ one)
|
||||||
|
|
||||||
|
-- Note: with more work, we could derive the axiom mul_left_id
|
||||||
|
|
||||||
|
section group
|
||||||
|
|
||||||
|
variable [s : group A]
|
||||||
|
include s
|
||||||
|
|
||||||
|
theorem mul_left_inv (a : A) : a⁻¹ * a ≈ 1 := !group.mul_left_inv
|
||||||
|
|
||||||
|
theorem inv_mul_cancel_left (a b : A) : a⁻¹ * (a * b) ≈ b :=
|
||||||
|
calc
|
||||||
|
a⁻¹ * (a * b) ≈ a⁻¹ * a * b : mul_assoc
|
||||||
|
... ≈ 1 * b : mul_left_inv
|
||||||
|
... ≈ b : mul_left_id
|
||||||
|
|
||||||
|
theorem inv_mul_cancel_right (a b : A) : a * b⁻¹ * b ≈ a :=
|
||||||
|
calc
|
||||||
|
a * b⁻¹ * b ≈ a * (b⁻¹ * b) : mul_assoc
|
||||||
|
... ≈ a * 1 : mul_left_inv
|
||||||
|
... ≈ a : mul_right_id
|
||||||
|
|
||||||
|
theorem inv_unique {a b : A} (H : a * b ≈ 1) : a⁻¹ ≈ b :=
|
||||||
|
calc
|
||||||
|
a⁻¹ ≈ a⁻¹ * 1 : mul_right_id
|
||||||
|
... ≈ a⁻¹ * (a * b) : H
|
||||||
|
... ≈ b : inv_mul_cancel_left
|
||||||
|
|
||||||
|
theorem inv_one : 1⁻¹ ≈ 1 := inv_unique (mul_left_id 1)
|
||||||
|
|
||||||
|
theorem inv_inv (a : A) : (a⁻¹)⁻¹ ≈ a := inv_unique (mul_left_inv a)
|
||||||
|
|
||||||
|
theorem inv_inj {a b : A} (H : a⁻¹ ≈ b⁻¹) : a ≈ b :=
|
||||||
|
calc
|
||||||
|
a ≈ (a⁻¹)⁻¹ : inv_inv
|
||||||
|
... ≈ b : inv_unique (H⁻¹ ▹ (mul_left_inv _))
|
||||||
|
|
||||||
|
--theorem inv_eq_inv_iff_eq (a b : A) : a⁻¹ ≈ b⁻¹ ↔ a ≈ b :=
|
||||||
|
--iff.intro (assume H, inv_inj H) (assume H, congr_arg _ H)
|
||||||
|
|
||||||
|
--theorem inv_eq_one_iff_eq_one (a b : A) : a⁻¹ ≈ 1 ↔ a ≈ 1 :=
|
||||||
|
--inv_one ▹ !inv_eq_inv_iff_eq
|
||||||
|
|
||||||
|
theorem eq_inv_imp_eq_inv {a b : A} (H : a ≈ b⁻¹) : b ≈ a⁻¹ :=
|
||||||
|
H⁻¹ ▹ (inv_inv b)⁻¹
|
||||||
|
|
||||||
|
--theorem eq_inv_iff_eq_inv (a b : A) : a ≈ b⁻¹ ↔ b ≈ a⁻¹ :=
|
||||||
|
--iff.intro !eq_inv_imp_eq_inv !eq_inv_imp_eq_inv
|
||||||
|
|
||||||
|
theorem mul_right_inv (a : A) : a * a⁻¹ ≈ 1 :=
|
||||||
|
calc
|
||||||
|
a * a⁻¹ ≈ (a⁻¹)⁻¹ * a⁻¹ : inv_inv
|
||||||
|
... ≈ 1 : mul_left_inv
|
||||||
|
|
||||||
|
theorem mul_inv_cancel_left (a b : A) : a * (a⁻¹ * b) ≈ b :=
|
||||||
|
calc
|
||||||
|
a * (a⁻¹ * b) ≈ a * a⁻¹ * b : mul_assoc
|
||||||
|
... ≈ 1 * b : mul_right_inv
|
||||||
|
... ≈ b : mul_left_id
|
||||||
|
|
||||||
|
theorem mul_inv_cancel_right (a b : A) : a * b * b⁻¹ ≈ a :=
|
||||||
|
calc
|
||||||
|
a * b * b⁻¹ ≈ a * (b * b⁻¹) : mul_assoc
|
||||||
|
... ≈ a * 1 : mul_right_inv
|
||||||
|
... ≈ a : mul_right_id
|
||||||
|
|
||||||
|
theorem inv_mul (a b : A) : (a * b)⁻¹ ≈ b⁻¹ * a⁻¹ :=
|
||||||
|
inv_unique
|
||||||
|
(calc
|
||||||
|
a * b * (b⁻¹ * a⁻¹) ≈ a * (b * (b⁻¹ * a⁻¹)) : mul_assoc
|
||||||
|
... ≈ a * a⁻¹ : mul_inv_cancel_left
|
||||||
|
... ≈ 1 : mul_right_inv)
|
||||||
|
|
||||||
|
theorem mul_inv_eq_one_imp_eq {a b : A} (H : a * b⁻¹ ≈ 1) : a ≈ b :=
|
||||||
|
calc
|
||||||
|
a ≈ a * b⁻¹ * b : inv_mul_cancel_right
|
||||||
|
... ≈ 1 * b : H
|
||||||
|
... ≈ b : mul_left_id
|
||||||
|
|
||||||
|
-- TODO: better names for the next eight theorems? (Also for additive ones.)
|
||||||
|
theorem mul_eq_imp_eq_mul_inv {a b c : A} (H : a * b ≈ c) : a ≈ c * b⁻¹ :=
|
||||||
|
H ▹ !mul_inv_cancel_right⁻¹
|
||||||
|
|
||||||
|
theorem mul_eq_imp_eq_inv_mul {a b c : A} (H : a * b ≈ c) : b ≈ a⁻¹ * c :=
|
||||||
|
H ▹ !inv_mul_cancel_left⁻¹
|
||||||
|
|
||||||
|
theorem eq_mul_imp_inv_mul_eq {a b c : A} (H : a ≈ b * c) : b⁻¹ * a ≈ c :=
|
||||||
|
H⁻¹ ▹ !inv_mul_cancel_left
|
||||||
|
|
||||||
|
theorem eq_mul_imp_mul_inv_eq {a b c : A} (H : a ≈ b * c) : a * c⁻¹ ≈ b :=
|
||||||
|
H⁻¹ ▹ !mul_inv_cancel_right
|
||||||
|
|
||||||
|
theorem mul_inv_eq_imp_eq_mul {a b c : A} (H : a * b⁻¹ ≈ c) : a ≈ c * b :=
|
||||||
|
!inv_inv ▹ (mul_eq_imp_eq_mul_inv H)
|
||||||
|
|
||||||
|
theorem inv_mul_eq_imp_eq_mul {a b c : A} (H : a⁻¹ * b ≈ c) : b ≈ a * c :=
|
||||||
|
!inv_inv ▹ (mul_eq_imp_eq_inv_mul H)
|
||||||
|
|
||||||
|
theorem eq_inv_mul_imp_mul_eq {a b c : A} (H : a ≈ b⁻¹ * c) : b * a ≈ c :=
|
||||||
|
!inv_inv ▹ (eq_mul_imp_inv_mul_eq H)
|
||||||
|
|
||||||
|
theorem eq_mul_inv_imp_mul_eq {a b c : A} (H : a ≈ b * c⁻¹) : a * c ≈ b :=
|
||||||
|
!inv_inv ▹ (eq_mul_imp_mul_inv_eq H)
|
||||||
|
|
||||||
|
--theorem mul_eq_iff_eq_inv_mul (a b c : A) : a * b ≈ c ↔ b ≈ a⁻¹ * c :=
|
||||||
|
--iff.intro mul_eq_imp_eq_inv_mul eq_inv_mul_imp_mul_eq
|
||||||
|
|
||||||
|
--theorem mul_eq_iff_eq_mul_inv (a b c : A) : a * b ≈ c ↔ a ≈ c * b⁻¹ :=
|
||||||
|
--iff.intro mul_eq_imp_eq_mul_inv eq_mul_inv_imp_mul_eq
|
||||||
|
|
||||||
|
definition group.to_left_cancel_semigroup [instance] : left_cancel_semigroup A :=
|
||||||
|
left_cancel_semigroup.mk (@group.mul A s) (@group.carrier_hset A s) (@group.mul_assoc A s)
|
||||||
|
(take a b c,
|
||||||
|
assume H : a * b ≈ a * c,
|
||||||
|
calc
|
||||||
|
b ≈ a⁻¹ * (a * b) : inv_mul_cancel_left
|
||||||
|
... ≈ a⁻¹ * (a * c) : H
|
||||||
|
... ≈ c : inv_mul_cancel_left)
|
||||||
|
|
||||||
|
definition group.to_right_cancel_semigroup [instance] : right_cancel_semigroup A :=
|
||||||
|
right_cancel_semigroup.mk (@group.mul A s) (@group.carrier_hset A s) (@group.mul_assoc A s)
|
||||||
|
(take a b c,
|
||||||
|
assume H : a * b ≈ c * b,
|
||||||
|
calc
|
||||||
|
a ≈ (a * b) * b⁻¹ : mul_inv_cancel_right
|
||||||
|
... ≈ (c * b) * b⁻¹ : H
|
||||||
|
... ≈ c : mul_inv_cancel_right)
|
||||||
|
|
||||||
|
end group
|
||||||
|
|
||||||
|
structure comm_group [class] (A : Type) extends group A, comm_monoid A
|
||||||
|
|
||||||
|
|
||||||
|
/- additive group -/
|
||||||
|
|
||||||
|
structure add_group [class] (A : Type) extends add_monoid A, has_neg A :=
|
||||||
|
(add_left_inv : ∀a, add (neg a) a ≈ zero)
|
||||||
|
|
||||||
|
section add_group
|
||||||
|
|
||||||
|
variables [s : add_group A]
|
||||||
|
include s
|
||||||
|
|
||||||
|
theorem add_left_inv (a : A) : -a + a ≈ 0 := !add_group.add_left_inv
|
||||||
|
|
||||||
|
theorem neg_add_cancel_left (a b : A) : -a + (a + b) ≈ b :=
|
||||||
|
calc
|
||||||
|
-a + (a + b) ≈ -a + a + b : add_assoc
|
||||||
|
... ≈ 0 + b : add_left_inv
|
||||||
|
... ≈ b : add_left_id
|
||||||
|
|
||||||
|
theorem neg_add_cancel_right (a b : A) : a + -b + b ≈ a :=
|
||||||
|
calc
|
||||||
|
a + -b + b ≈ a + (-b + b) : add_assoc
|
||||||
|
... ≈ a + 0 : add_left_inv
|
||||||
|
... ≈ a : add_right_id
|
||||||
|
|
||||||
|
theorem neg_unique {a b : A} (H : a + b ≈ 0) : -a ≈ b :=
|
||||||
|
calc
|
||||||
|
-a ≈ -a + 0 : add_right_id
|
||||||
|
... ≈ -a + (a + b) : H
|
||||||
|
... ≈ b : neg_add_cancel_left
|
||||||
|
|
||||||
|
theorem neg_zero : -0 ≈ 0 := neg_unique (add_left_id 0)
|
||||||
|
|
||||||
|
theorem neg_neg (a : A) : -(-a) ≈ a := neg_unique (add_left_inv a)
|
||||||
|
|
||||||
|
theorem neg_inj {a b : A} (H : -a ≈ -b) : a ≈ b :=
|
||||||
|
calc
|
||||||
|
a ≈ -(-a) : neg_neg
|
||||||
|
... ≈ b : neg_unique (H⁻¹ ▹ (add_left_inv _))
|
||||||
|
|
||||||
|
--theorem neg_eq_neg_iff_eq (a b : A) : -a ≈ -b ↔ a ≈ b :=
|
||||||
|
--iff.intro (assume H, neg_inj H) (assume H, congr_arg _ H)
|
||||||
|
|
||||||
|
--theorem neg_eq_zero_iff_eq_zero (a b : A) : -a ≈ 0 ↔ a ≈ 0 :=
|
||||||
|
--neg_zero ▹ !neg_eq_neg_iff_eq
|
||||||
|
|
||||||
|
theorem eq_neg_imp_eq_neg {a b : A} (H : a ≈ -b) : b ≈ -a :=
|
||||||
|
H⁻¹ ▹ (neg_neg b)⁻¹
|
||||||
|
|
||||||
|
--theorem eq_neg_iff_eq_neg (a b : A) : a ≈ -b ↔ b ≈ -a :=
|
||||||
|
--iff.intro !eq_neg_imp_eq_neg !eq_neg_imp_eq_neg
|
||||||
|
|
||||||
|
theorem add_right_inv (a : A) : a + -a ≈ 0 :=
|
||||||
|
calc
|
||||||
|
a + -a ≈ -(-a) + -a : neg_neg
|
||||||
|
... ≈ 0 : add_left_inv
|
||||||
|
|
||||||
|
theorem add_neg_cancel_left (a b : A) : a + (-a + b) ≈ b :=
|
||||||
|
calc
|
||||||
|
a + (-a + b) ≈ a + -a + b : add_assoc
|
||||||
|
... ≈ 0 + b : add_right_inv
|
||||||
|
... ≈ b : add_left_id
|
||||||
|
|
||||||
|
theorem add_neg_cancel_right (a b : A) : a + b + -b ≈ a :=
|
||||||
|
calc
|
||||||
|
a + b + -b ≈ a + (b + -b) : add_assoc
|
||||||
|
... ≈ a + 0 : add_right_inv
|
||||||
|
... ≈ a : add_right_id
|
||||||
|
|
||||||
|
theorem neg_add (a b : A) : -(a + b) ≈ -b + -a :=
|
||||||
|
neg_unique
|
||||||
|
(calc
|
||||||
|
a + b + (-b + -a) ≈ a + (b + (-b + -a)) : add_assoc
|
||||||
|
... ≈ a + -a : add_neg_cancel_left
|
||||||
|
... ≈ 0 : add_right_inv)
|
||||||
|
|
||||||
|
theorem add_eq_imp_eq_add_neg {a b c : A} (H : a + b ≈ c) : a ≈ c + -b :=
|
||||||
|
H ▹ !add_neg_cancel_right⁻¹
|
||||||
|
|
||||||
|
theorem add_eq_imp_eq_neg_add {a b c : A} (H : a + b ≈ c) : b ≈ -a + c :=
|
||||||
|
H ▹ !neg_add_cancel_left⁻¹
|
||||||
|
|
||||||
|
theorem eq_add_imp_neg_add_eq {a b c : A} (H : a ≈ b + c) : -b + a ≈ c :=
|
||||||
|
H⁻¹ ▹ !neg_add_cancel_left
|
||||||
|
|
||||||
|
theorem eq_add_imp_add_neg_eq {a b c : A} (H : a ≈ b + c) : a + -c ≈ b :=
|
||||||
|
H⁻¹ ▹ !add_neg_cancel_right
|
||||||
|
|
||||||
|
theorem add_neg_eq_imp_eq_add {a b c : A} (H : a + -b ≈ c) : a ≈ c + b :=
|
||||||
|
!neg_neg ▹ (add_eq_imp_eq_add_neg H)
|
||||||
|
|
||||||
|
theorem neg_add_eq_imp_eq_add {a b c : A} (H : -a + b ≈ c) : b ≈ a + c :=
|
||||||
|
!neg_neg ▹ (add_eq_imp_eq_neg_add H)
|
||||||
|
|
||||||
|
theorem eq_neg_add_imp_add_eq {a b c : A} (H : a ≈ -b + c) : b + a ≈ c :=
|
||||||
|
!neg_neg ▹ (eq_add_imp_neg_add_eq H)
|
||||||
|
|
||||||
|
theorem eq_add_neg_imp_add_eq {a b c : A} (H : a ≈ b + -c) : a + c ≈ b :=
|
||||||
|
!neg_neg ▹ (eq_add_imp_add_neg_eq H)
|
||||||
|
|
||||||
|
--theorem add_eq_iff_eq_neg_add (a b c : A) : a + b ≈ c ↔ b ≈ -a + c :=
|
||||||
|
--iff.intro add_eq_imp_eq_neg_add eq_neg_add_imp_add_eq
|
||||||
|
|
||||||
|
--theorem add_eq_iff_eq_add_neg (a b c : A) : a + b ≈ c ↔ a ≈ c + -b :=
|
||||||
|
--iff.intro add_eq_imp_eq_add_neg eq_add_neg_imp_add_eq
|
||||||
|
|
||||||
|
definition add_group.to_left_cancel_semigroup [instance] :
|
||||||
|
add_left_cancel_semigroup A :=
|
||||||
|
add_left_cancel_semigroup.mk (@add_group.add A s) (@add_group.add_assoc A s)
|
||||||
|
(take a b c,
|
||||||
|
assume H : a + b ≈ a + c,
|
||||||
|
calc
|
||||||
|
b ≈ -a + (a + b) : neg_add_cancel_left
|
||||||
|
... ≈ -a + (a + c) : H
|
||||||
|
... ≈ c : neg_add_cancel_left)
|
||||||
|
|
||||||
|
definition add_group.to_add_right_cancel_semigroup [instance] :
|
||||||
|
add_right_cancel_semigroup A :=
|
||||||
|
add_right_cancel_semigroup.mk (@add_group.add A s) (@add_group.add_assoc A s)
|
||||||
|
(take a b c,
|
||||||
|
assume H : a + b ≈ c + b,
|
||||||
|
calc
|
||||||
|
a ≈ (a + b) + -b : add_neg_cancel_right
|
||||||
|
... ≈ (c + b) + -b : H
|
||||||
|
... ≈ c : add_neg_cancel_right)
|
||||||
|
|
||||||
|
/- minus -/
|
||||||
|
|
||||||
|
-- TODO: derive corresponding facts for div in a field
|
||||||
|
definition minus (a b : A) : A := a + -b
|
||||||
|
|
||||||
|
infix `-` := minus
|
||||||
|
|
||||||
|
theorem minus_self (a : A) : a - a ≈ 0 := !add_right_inv
|
||||||
|
|
||||||
|
theorem minus_add_cancel (a b : A) : a - b + b ≈ a := !neg_add_cancel_right
|
||||||
|
|
||||||
|
theorem add_minus_cancel (a b : A) : a + b - b ≈ a := !add_neg_cancel_right
|
||||||
|
|
||||||
|
theorem minus_eq_zero_imp_eq {a b : A} (H : a - b ≈ 0) : a ≈ b :=
|
||||||
|
calc
|
||||||
|
a ≈ (a - b) + b : minus_add_cancel
|
||||||
|
... ≈ 0 + b : H
|
||||||
|
... ≈ b : add_left_id
|
||||||
|
|
||||||
|
--theorem eq_iff_minus_eq_zero (a b : A) : a ≈ b ↔ a - b ≈ 0 :=
|
||||||
|
--iff.intro (assume H, H ▹ !minus_self) (assume H, minus_eq_zero_imp_eq H)
|
||||||
|
|
||||||
|
theorem zero_minus (a : A) : 0 - a ≈ -a := !add_left_id
|
||||||
|
|
||||||
|
theorem minus_zero (a : A) : a - 0 ≈ a := (neg_zero⁻¹) ▹ !add_right_id
|
||||||
|
|
||||||
|
theorem minus_neg_eq_add (a b : A) : a - (-b) ≈ a + b := !neg_neg⁻¹ ▹ idp
|
||||||
|
|
||||||
|
theorem neg_minus_eq (a b : A) : -(a - b) ≈ b - a :=
|
||||||
|
neg_unique
|
||||||
|
(calc
|
||||||
|
a - b + (b - a) ≈ a - b + b - a : add_assoc
|
||||||
|
... ≈ a - a : minus_add_cancel
|
||||||
|
... ≈ 0 : minus_self)
|
||||||
|
|
||||||
|
theorem add_minus_eq (a b c : A) : a + (b - c) ≈ a + b - c := !add_assoc⁻¹
|
||||||
|
|
||||||
|
theorem minus_add_eq_minus_swap (a b c : A) : a - (b + c) ≈ a - c - b :=
|
||||||
|
calc
|
||||||
|
a - (b + c) ≈ a + (-c - b) : neg_add
|
||||||
|
... ≈ a - c - b : add_assoc
|
||||||
|
|
||||||
|
--theorem minus_eq_iff_eq_add (a b c : A) : a - b ≈ c ↔ a ≈ c + b :=
|
||||||
|
--iff.intro (assume H, add_neg_eq_imp_eq_add H) (assume H, eq_add_imp_add_neg_eq H)
|
||||||
|
|
||||||
|
--theorem eq_minus_iff_add_eq (a b c : A) : a ≈ b - c ↔ a + c ≈ b :=
|
||||||
|
--iff.intro (assume H, eq_add_neg_imp_add_eq H) (assume H, add_eq_imp_eq_add_neg H)
|
||||||
|
|
||||||
|
--theorem minus_eq_minus_iff {a b c d : A} (H : a - b ≈ c - d) : a ≈ b ↔ c ≈ d :=
|
||||||
|
--calc
|
||||||
|
-- a ≈ b ↔ a - b ≈ 0 : eq_iff_minus_eq_zero
|
||||||
|
-- ... ↔ c - d ≈ 0 : H ▹ !iff.refl
|
||||||
|
-- ... ↔ c ≈ d : iff.symm (eq_iff_minus_eq_zero c d)
|
||||||
|
|
||||||
|
end add_group
|
||||||
|
|
||||||
|
structure add_comm_group [class] (A : Type) extends add_group A, add_comm_monoid A
|
||||||
|
|
||||||
|
section add_comm_group
|
||||||
|
|
||||||
|
variable [s : add_comm_group A]
|
||||||
|
include s
|
||||||
|
|
||||||
|
theorem minus_add_eq (a b c : A) : a - (b + c) ≈ a - b - c :=
|
||||||
|
!add_comm ▹ !minus_add_eq_minus_swap
|
||||||
|
|
||||||
|
theorem neg_add_eq_minus (a b : A) : -a + b ≈ b - a := !add_comm
|
||||||
|
|
||||||
|
theorem neg_add_distrib (a b : A) : -(a + b) ≈ -a + -b := !add_comm ▹ !neg_add
|
||||||
|
|
||||||
|
theorem minus_add_right_comm (a b c : A) : a - b + c ≈ a + c - b := !add_right_comm
|
||||||
|
|
||||||
|
theorem minus_minus_eq (a b c : A) : a - b - c ≈ a - (b + c) :=
|
||||||
|
calc
|
||||||
|
a - b - c ≈ a + (-b + -c) : add_assoc
|
||||||
|
... ≈ a + -(b + c) : neg_add_distrib
|
||||||
|
... ≈ a - (b + c) : idp
|
||||||
|
|
||||||
|
theorem add_minus_cancel_left (a b c : A) : (c + a) - (c + b) ≈ a - b :=
|
||||||
|
calc
|
||||||
|
(c + a) - (c + b) ≈ c + a - c - b : minus_add_eq
|
||||||
|
... ≈ a + c - c - b : add_comm a c
|
||||||
|
... ≈ a - b : add_minus_cancel
|
||||||
|
|
||||||
|
|
||||||
|
end add_comm_group
|
||||||
|
|
||||||
|
|
||||||
|
/- bundled structures -/
|
||||||
|
|
||||||
|
structure Semigroup :=
|
||||||
|
(carrier : Type) (struct : semigroup carrier)
|
||||||
|
|
||||||
|
coercion Semigroup.carrier
|
||||||
|
instance Semigroup.struct
|
||||||
|
|
||||||
|
structure CommSemigroup :=
|
||||||
|
(carrier : Type) (struct : comm_semigroup carrier)
|
||||||
|
|
||||||
|
coercion CommSemigroup.carrier
|
||||||
|
instance CommSemigroup.struct
|
||||||
|
|
||||||
|
structure Monoid :=
|
||||||
|
(carrier : Type) (struct : monoid carrier)
|
||||||
|
|
||||||
|
coercion Monoid.carrier
|
||||||
|
instance Monoid.struct
|
||||||
|
|
||||||
|
structure CommMonoid :=
|
||||||
|
(carrier : Type) (struct : comm_monoid carrier)
|
||||||
|
|
||||||
|
coercion CommMonoid.carrier
|
||||||
|
instance CommMonoid.struct
|
||||||
|
|
||||||
|
structure Group :=
|
||||||
|
(carrier : Type) (struct : group carrier)
|
||||||
|
|
||||||
|
coercion Group.carrier
|
||||||
|
instance Group.struct
|
||||||
|
|
||||||
|
structure CommGroup :=
|
||||||
|
(carrier : Type) (struct : comm_group carrier)
|
||||||
|
|
||||||
|
coercion CommGroup.carrier
|
||||||
|
instance CommGroup.struct
|
||||||
|
|
||||||
|
structure AddSemigroup :=
|
||||||
|
(carrier : Type) (struct : add_semigroup carrier)
|
||||||
|
|
||||||
|
coercion AddSemigroup.carrier
|
||||||
|
instance AddSemigroup.struct
|
||||||
|
|
||||||
|
structure AddCommSemigroup :=
|
||||||
|
(carrier : Type) (struct : add_comm_semigroup carrier)
|
||||||
|
|
||||||
|
coercion AddCommSemigroup.carrier
|
||||||
|
instance AddCommSemigroup.struct
|
||||||
|
|
||||||
|
structure AddMonoid :=
|
||||||
|
(carrier : Type) (struct : add_monoid carrier)
|
||||||
|
|
||||||
|
coercion AddMonoid.carrier
|
||||||
|
instance AddMonoid.struct
|
||||||
|
|
||||||
|
structure AddCommMonoid :=
|
||||||
|
(carrier : Type) (struct : add_comm_monoid carrier)
|
||||||
|
|
||||||
|
coercion AddCommMonoid.carrier
|
||||||
|
instance AddCommMonoid.struct
|
||||||
|
|
||||||
|
structure AddGroup :=
|
||||||
|
(carrier : Type) (struct : add_group carrier)
|
||||||
|
|
||||||
|
coercion AddGroup.carrier
|
||||||
|
instance AddGroup.struct
|
||||||
|
|
||||||
|
structure AddCommGroup :=
|
||||||
|
(carrier : Type) (struct : add_comm_group carrier)
|
||||||
|
|
||||||
|
coercion AddCommGroup.carrier
|
||||||
|
instance AddCommGroup.struct
|
||||||
|
|
||||||
|
end path_algebra
|
122
library/hott/algebra/relation.lean
Normal file
122
library/hott/algebra/relation.lean
Normal file
|
@ -0,0 +1,122 @@
|
||||||
|
/-
|
||||||
|
Copyright (c) 2014 Microsoft Corporation. All rights reserved.
|
||||||
|
Released under Apache 2.0 license as described in the file LICENSE.
|
||||||
|
|
||||||
|
Module: algebra.relation
|
||||||
|
Author: Jeremy Avigad
|
||||||
|
|
||||||
|
General properties of relations, and classes for equivalence relations and congruences.
|
||||||
|
-/
|
||||||
|
|
||||||
|
namespace relation
|
||||||
|
|
||||||
|
/- properties of binary relations -/
|
||||||
|
|
||||||
|
section
|
||||||
|
variables {T : Type} (R : T → T → Type)
|
||||||
|
|
||||||
|
definition reflexive : Type := Πx, R x x
|
||||||
|
definition symmetric : Type := Π⦃x y⦄, R x y → R y x
|
||||||
|
definition transitive : Type := Π⦃x y z⦄, R x y → R y z → R x z
|
||||||
|
end
|
||||||
|
|
||||||
|
|
||||||
|
/- classes for equivalence relations -/
|
||||||
|
|
||||||
|
structure is_reflexive [class] {T : Type} (R : T → T → Type) := (refl : reflexive R)
|
||||||
|
structure is_symmetric [class] {T : Type} (R : T → T → Type) := (symm : symmetric R)
|
||||||
|
structure is_transitive [class] {T : Type} (R : T → T → Type) := (trans : transitive R)
|
||||||
|
|
||||||
|
structure is_equivalence [class] {T : Type} (R : T → T → Type)
|
||||||
|
extends is_reflexive R, is_symmetric R, is_transitive R
|
||||||
|
|
||||||
|
-- partial equivalence relation
|
||||||
|
structure is_PER {T : Type} (R : T → T → Type) extends is_symmetric R, is_transitive R
|
||||||
|
|
||||||
|
-- Generic notation. For example, is_refl R is the reflexivity of R, if that can be
|
||||||
|
-- inferred by type class inference
|
||||||
|
section
|
||||||
|
variables {T : Type} (R : T → T → Type)
|
||||||
|
definition rel_refl [C : is_reflexive R] := is_reflexive.refl R
|
||||||
|
definition rel_symm [C : is_symmetric R] := is_symmetric.symm R
|
||||||
|
definition rel_trans [C : is_transitive R] := is_transitive.trans R
|
||||||
|
end
|
||||||
|
|
||||||
|
|
||||||
|
/- classes for unary and binary congruences with respect to arbitrary relations -/
|
||||||
|
|
||||||
|
structure is_congruence [class]
|
||||||
|
{T1 : Type} (R1 : T1 → T1 → Type)
|
||||||
|
{T2 : Type} (R2 : T2 → T2 → Type)
|
||||||
|
(f : T1 → T2) :=
|
||||||
|
(congr : Π{x y}, R1 x y → R2 (f x) (f y))
|
||||||
|
|
||||||
|
structure is_congruence2 [class]
|
||||||
|
{T1 : Type} (R1 : T1 → T1 → Type)
|
||||||
|
{T2 : Type} (R2 : T2 → T2 → Type)
|
||||||
|
{T3 : Type} (R3 : T3 → T3 → Type)
|
||||||
|
(f : T1 → T2 → T3) :=
|
||||||
|
(congr2 : Π{x1 y1 : T1} {x2 y2 : T2}, R1 x1 y1 → R2 x2 y2 → R3 (f x1 x2) (f y1 y2))
|
||||||
|
|
||||||
|
namespace is_congruence
|
||||||
|
|
||||||
|
-- makes the type class explicit
|
||||||
|
definition app {T1 : Type} {R1 : T1 → T1 → Type} {T2 : Type} {R2 : T2 → T2 → Type}
|
||||||
|
{f : T1 → T2} (C : is_congruence R1 R2 f) ⦃x y : T1⦄ : R1 x y → R2 (f x) (f y) :=
|
||||||
|
is_congruence.rec (λu, u) C x y
|
||||||
|
|
||||||
|
definition app2 {T1 : Type} {R1 : T1 → T1 → Type} {T2 : Type} {R2 : T2 → T2 → Type}
|
||||||
|
{T3 : Type} {R3 : T3 → T3 → Type}
|
||||||
|
{f : T1 → T2 → T3} (C : is_congruence2 R1 R2 R3 f) ⦃x1 y1 : T1⦄ ⦃x2 y2 : T2⦄ :
|
||||||
|
R1 x1 y1 → R2 x2 y2 → R3 (f x1 x2) (f y1 y2) :=
|
||||||
|
is_congruence2.rec (λu, u) C x1 y1 x2 y2
|
||||||
|
|
||||||
|
/- tools to build instances -/
|
||||||
|
|
||||||
|
theorem compose
|
||||||
|
{T2 : Type} {R2 : T2 → T2 → Type}
|
||||||
|
{T3 : Type} {R3 : T3 → T3 → Type}
|
||||||
|
{g : T2 → T3} (C2 : is_congruence R2 R3 g)
|
||||||
|
⦃T1 : Type⦄ {R1 : T1 → T1 → Type}
|
||||||
|
{f : T1 → T2} (C1 : is_congruence R1 R2 f) :
|
||||||
|
is_congruence R1 R3 (λx, g (f x)) :=
|
||||||
|
is_congruence.mk (λx1 x2 H, app C2 (app C1 H))
|
||||||
|
|
||||||
|
theorem compose21
|
||||||
|
{T2 : Type} {R2 : T2 → T2 → Type}
|
||||||
|
{T3 : Type} {R3 : T3 → T3 → Type}
|
||||||
|
{T4 : Type} {R4 : T4 → T4 → Type}
|
||||||
|
{g : T2 → T3 → T4} (C3 : is_congruence2 R2 R3 R4 g)
|
||||||
|
⦃T1 : Type⦄ {R1 : T1 → T1 → Type}
|
||||||
|
{f1 : T1 → T2} (C1 : is_congruence R1 R2 f1)
|
||||||
|
{f2 : T1 → T3} (C2 : is_congruence R1 R3 f2) :
|
||||||
|
is_congruence R1 R4 (λx, g (f1 x) (f2 x)) :=
|
||||||
|
is_congruence.mk (λx1 x2 H, app2 C3 (app C1 H) (app C2 H))
|
||||||
|
|
||||||
|
theorem const {T2 : Type} (R2 : T2 → T2 → Type) (H : relation.reflexive R2)
|
||||||
|
⦃T1 : Type⦄ (R1 : T1 → T1 → Prop) (c : T2) :
|
||||||
|
is_congruence R1 R2 (λu : T1, c) :=
|
||||||
|
is_congruence.mk (λx y H1, H c)
|
||||||
|
|
||||||
|
end is_congruence
|
||||||
|
|
||||||
|
theorem congruence_const [instance] {T2 : Type} (R2 : T2 → T2 → Type)
|
||||||
|
[C : is_reflexive R2] ⦃T1 : Type⦄ (R1 : T1 → T1 → Prop) (c : T2) :
|
||||||
|
is_congruence R1 R2 (λu : T1, c) :=
|
||||||
|
is_congruence.const R2 (is_reflexive.refl R2) R1 c
|
||||||
|
|
||||||
|
theorem congruence_trivial [instance] {T : Type} (R : T → T → Type) :
|
||||||
|
is_congruence R R (λu, u) :=
|
||||||
|
is_congruence.mk (λx y H, H)
|
||||||
|
|
||||||
|
|
||||||
|
/- relations that can be coerced to functions / implications-/
|
||||||
|
|
||||||
|
structure mp_like [class] (R : Type → Type → Type) :=
|
||||||
|
(app : Π{a b : Type}, R a b → (a → b))
|
||||||
|
|
||||||
|
definition rel_mp (R : Type → Type → Type) [C : mp_like R] {a b : Type} (H : R a b) :=
|
||||||
|
mp_like.app H
|
||||||
|
|
||||||
|
|
||||||
|
end relation
|
Loading…
Reference in a new issue