feat(library/standard/data/option): add basic theorems for option types

Signed-off-by: Leonardo de Moura <leonardo@microsoft.com>
This commit is contained in:
Leonardo de Moura 2014-08-02 16:59:01 -07:00
parent 689c1ee58d
commit 148836d14b
2 changed files with 39 additions and 4 deletions

View file

@ -1,13 +1,48 @@
------------------------------------------------------------------------------------------------------ Copyright (c) 2014 Microsoft Corporation. All rights reserved.
------------------------------------------------------------------------------------------------------
-- Copyright (c) 2014 Microsoft Corporation. All rights reserved.
-- Released under Apache 2.0 license as described in the file LICENSE.
-- Author: Leonardo de Moura
----------------------------------------------------------------------------------------------------
import logic.connectives.basic logic.connectives.eq logic.classes.inhabited logic.classes.decidable
using eq_proofs decidable
import logic.classes.inhabited
namespace option
inductive option (A : Type) : Type :=
| none {} : option A
| some : A → option A
theorem induction_on {A : Type} {p : option A → Prop} (o : option A) (H1 : p none) (H2 : ∀a, p (some a)) : p o :=
option_rec H1 H2 o
definition rec_on {A : Type} {C : option A → Type} (o : option A) (H1 : C none) (H2 : ∀a, C (some a)) : C o :=
option_rec H1 H2 o
definition is_none {A : Type} (o : option A) : Prop :=
option_rec true (λ a, false) o
theorem is_none_none {A : Type} : is_none (@none A) :=
trivial
theorem not_is_none_some {A : Type} (a : A) : ¬ is_none (some a) :=
not_false_trivial
theorem none_ne_some {A : Type} (a : A) : none ≠ some a :=
assume H : none = some a, absurd
(H ▸ is_none_none)
(not_is_none_some a)
theorem some_inj {A : Type} {a₁ a₂ : A} (H : some a₁ = some a₂) : a₁ = a₂ :=
congr2 (option_rec a₁ (λ a, a)) H
theorem inhabited_option [instance] (A : Type) : inhabited (option A) :=
inhabited_intro none
theorem decidable_eq [instance] {A : Type} {H : ∀a₁ a₂ : A, decidable (a₁ = a₂)} (o₁ o₂ : option A) : decidable (o₁ = o₂) :=
rec_on o₁
(rec_on o₂ (inl (refl _)) (take a₂, (inr (none_ne_some a₂))))
(take a₁ : A, rec_on o₂
(inr (ne_symm (none_ne_some a₁)))
(take a₂ : A, decidable.rec_on (H a₁ a₂)
(assume Heq : a₁ = a₂, inl (Heq ▸ refl _))
(assume Hne : a₁ ≠ a₂, inr (assume Hn : some a₁ = some a₂, absurd (some_inj Hn) Hne))))
end

View file

@ -15,7 +15,7 @@ inductive decidable (p : Prop) : Type :=
theorem induction_on {p : Prop} {C : Prop} (H : decidable p) (H1 : p → C) (H2 : ¬p → C) : C :=
decidable_rec H1 H2 H
theorem em (p : Prop) (H : decidable p) : p ¬p :=
theorem em {p : Prop} (H : decidable p) : p ¬p :=
induction_on H (λ Hp, or_inl Hp) (λ Hnp, or_inr Hnp)
definition rec_on [inline] {p : Prop} {C : Type} (H : decidable p) (H1 : p → C) (H2 : ¬p → C) : C :=