feat(frontends/lean/parse_rewrite_tactic): cleanup rewrite tactic notation

Make a rewrite command sequence explicit.
This commit is contained in:
Leonardo de Moura 2015-02-04 20:16:24 -08:00
parent 14c72e82f6
commit 15efadfbdc
5 changed files with 31 additions and 32 deletions

View file

@ -11,10 +11,10 @@ Author: Leonardo de Moura
namespace lean {
static optional<expr> parse_pattern(parser & p) {
if (p.curr_is_token(get_lbracket_tk())) {
if (p.curr_is_token(get_lcurly_tk())) {
p.next();
expr r = p.parse_expr();
p.check_token_next(get_rbracket_tk(), "invalid rewrite pattern, ']' expected");
p.check_token_next(get_rcurly_tk(), "invalid rewrite pattern, '}' expected");
return some_expr(r);
} else {
return none_expr();
@ -80,18 +80,19 @@ expr parse_rewrite_element(parser & p) {
expr parse_rewrite_tactic(parser & p) {
buffer<expr> elems;
while (true) {
if (p.curr_is_token(get_lbracket_tk())) {
p.next();
while (true) {
auto pos = p.pos();
elems.push_back(p.save_pos(parse_rewrite_element(p), pos));
if (!p.curr_is_token(get_comma_tk()))
break;
p.next();
}
p.check_token_next(get_rbracket_tk(), "invalid rewrite tactic, ']' expected");
} else {
auto pos = p.pos();
elems.push_back(p.save_pos(parse_rewrite_element(p), pos));
if (!p.curr_is_token(get_sub_tk()) &&
!p.curr_is_numeral() &&
!p.curr_is_token(get_plus_tk()) &&
!p.curr_is_token(get_star_tk()) &&
!p.curr_is_token(get_slash_tk()) &&
!p.curr_is_identifier() &&
!p.curr_is_token(get_lbracket_tk()) &&
!p.curr_is_token(get_lparen_tk()))
break;
}
return mk_rewrite_tactic_expr(elems);
}

View file

@ -5,15 +5,15 @@ constant f {A : Type} : A → A → A
theorem test1 {A : Type} [s : add_comm_group A] (a b c : A) : f (a + 0) (f (a + 0) (a + 0)) = f a (f (0 + a) a) :=
begin
rewrite
add_right_id at {1 3} -- rewrite 1st and 3rd occurrences
[0 + _]add_comm -- apply commutativity to (0 + _)
rewrite [
add_right_id at {1 3}, -- rewrite 1st and 3rd occurrences
{0 + _}add_comm] -- apply commutativity to (0 + _)
end
axiom Ax {A : Type} [s₁ : has_mul A] [s₂ : has_one A] (a : A) : f (a * 1) (a * 1) = 1
theorem test2 {A : Type} [s : comm_group A] (a b c : A) : f a a = 1 :=
begin
rewrite -(mul_right_id a) -- - means apply symmetry, rewrite 0 ==> a * 0 at 1st and 2nd occurrences
Ax -- use Ax as rewrite rule
rewrite [-(mul_right_id a), -- - means apply symmetry, rewrite 0 ==> a * 0 at 1st and 2nd occurrences
Ax] -- use Ax as rewrite rule
end

View file

@ -3,7 +3,7 @@ open algebra
theorem test {A : Type} [s : comm_ring A] (a b c : A) : a + b + c = a + c + b :=
begin
rewrite add.assoc [b + _]add.comm -add.assoc,
rewrite [add.assoc, {b + _}add.comm, -add.assoc]
end
print definition test

View file

@ -5,9 +5,8 @@ constant f {A : Type} : A → A → A
theorem test1 {A : Type} [s : comm_ring A] (a b c : A) : f (a + 0) (f (a + 0) (a + 0)) = f a (f (0 + a) a) :=
begin
rewrite
add_zero at {1 3} -- rewrite 1st and 3rd occurrences
[0 + _]add.comm -- apply commutativity to (0 + _)
rewrite [add_zero at {1 3}, -- rewrite 1st and 3rd occurrences
{0 + _}add.comm] -- apply commutativity to (0 + _)
end
check @mul_zero
@ -16,27 +15,27 @@ axiom Ax {A : Type} [s₁ : has_mul A] [s₂ : has_zero A] (a : A) : f (a * 0) (
theorem test2 {A : Type} [s : comm_ring A] (a b c : A) : f 0 0 = 0 :=
begin
rewrite
-(mul_zero a) at {1 2} -- - means apply symmetry, rewrite 0 ==> a * 0 at 1st and 2nd occurrences
Ax -- use Ax as rewrite rule
rewrite [
-(mul_zero a) at {1 2}, -- - means apply symmetry, rewrite 0 ==> a * 0 at 1st and 2nd occurrences
Ax] -- use Ax as rewrite rule
end
theorem test3 {A : Type} [s : comm_ring A] (a b c : A) : a * 0 + 0 * b + c * 0 + 0 * a = 0 :=
begin
rewrite +mul_zero +zero_mul +add_zero -- in rewrite rules, + is notation for one or more
rewrite [+mul_zero, +zero_mul, +add_zero] -- in rewrite rules, + is notation for one or more
end
print definition test3
theorem test4 {A : Type} [s : comm_ring A] (a b c : A) : a * 0 + 0 * b + c * 0 + 0 * a = 0 :=
begin
rewrite *mul_zero *zero_mul *add_zero *zero_add -- in rewrite rules, * is notation for zero or more
rewrite [*mul_zero, *zero_mul, *add_zero, *zero_add] -- in rewrite rules, * is notation for zero or more
end
theorem test5 {A : Type} [s : comm_ring A] (a b c : A) : a * 0 + 0 * b + c * 0 + 0 * a = 0 :=
begin
rewrite
2 mul_zero -- apply mul_zero exactly twice
2 zero_mul -- apply zero_mul exactly twice
5>add_zero -- apply add_zero at most 5 times
rewrite [
2 mul_zero, -- apply mul_zero exactly twice
2 zero_mul, -- apply zero_mul exactly twice
5>add_zero] -- apply add_zero at most 5 times
end

View file

@ -17,7 +17,6 @@ end
theorem test3 {A : Type} [s : comm_ring A] (a b c : A) (H : a + 0 = 0 + 0) : f a a = f 0 0 :=
begin
rewrite add_zero at H,
rewrite zero_add at H,
rewrite [add_zero at H, zero_add at H],
rewrite H
end